
Supplement to “Adaptive Confidence Bands for Nonparametric
Regression Functions”

Abstract

This supplement contains the proofs of Theorem 2, Propositions 2 and 3, Lemma 1

and Eq.(14).

7 Proof of Theorem 2

Rather than prove Theorem 2 directly it is convenient to first prove an analogue of the

Theorem in the context of multivariate Normal random vectors. This is done in section 7.1.

The proof of Theorem 2 is then given in section 7.2

7.1 Confidence Bound For Multivariate Normal Vectors

In the first proposition let Xi, i = 1, 2, . . . , n be independent Normal random variables,

N(cnθi, 1). Let X = (X1, X2, . . . Xn). Let θ = (θ1, θ2, θn). For θ given we shall write

PX|θ and EX|θ for computing probabilities and expectations under this model. We shall also

assume that each θi is 0 or 1 and let Θn be the collection of such parameter values.

Suppose that C(X) = (C1(X), C2(X), Cn(X)) is a confidence set for θ = (θ1, θ2, . . . , θn)

where Ci(X) is a confidence interval for θi. Let L(Ci(X)) be the length of Ci(X).

Proposition 4. Suppose that C(X) is a confidence set for θ with uniform coverage of at

least 1− α over Θn. Suppose cn =
√
c log n with c < 1. Then for any a < 1 and � > 0 there

is an M such that for n ≥ M

sup
θ∈Θn

PX|θ(
�

L(Ci(X)) ≥ an) ≥ (1− α− �) (89)

and hence for any � > 0

sup
θ∈Θn

EX|θ(
�

L(Ci(X))) ≥ (1− α− �)n (90)

when n is sufficiently large.

If the confidence set C(X) also satisfies L(Ci(X)) = L(C1(X)) for all i then for any � > 0

there is an M such that for n ≥ M and all θ ∈ Θn

EX|θ(
�

L(Ci(X))) ≥ (1− α− �)n (91)

For any α < 1
2 there is a c > 0 such that if cn = c then for any � > 0 there is an M and

a C > 0 such that for n ≥ M and all θ ∈ Θn

EX|θ(
�

L(Ci(X))) ≥ (1− α− �)Cn (92)
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Proof. First note that attention may be restricted to confidence bands where each Ci(X)

is equal either to the single points 0 or cn or to the interval [0, cn]. Put an equally likely

independent prior on each coordinate and write π for this product prior. Write E for the

expectation taken with respect to the joint distribution of the θi and the Xi and P for

probabilities computed under such a model. Write Eπ for the expected value with respect to

the prior and write EX for the expected value with respect to the marginal distribution of

the vector X.

Now for any confidence band C(X) let C l(X) be the band such that C(X) = C l(X)

whenever
�

n

i=1 L(Ci(X)) ≤ lcn and such that C l(X) = (0, 0, . . . , 0) otherwise. For any

0 < a < 1 let Bn(a) be the event that
�

n

i=1 L(Ci(X)) ≤ ancn. Then

E(1(θ ∈ C(X))) ≤ E(1(θ ∈ C(X))1(Bn(a)))+(1−P (Bn(a))) ≤ E(1(θ ∈ Can(X)))+(1−P (Bn(a)))

(93)

Let

N =
n�

i=1

(1(−f ≤ Xi ≤ f) + 1(cn − f ≤ Xi ≤ cn + f)) (94)

For any a < d < 1, let An(d) be the event that N ≥ dn. Note that the marginal

distribution of N is binomial. Let f be any value such that for any � > 0 if n > M ,

P (An(d)) ≥ 1 − �. Write φ for the density function of a standard Normal random variable.

Since φ(y) ≤ 1
2 it follows that P (θi = cn|Xi) =

1
2φ(Xi−cn)

1
2φ(Xi−cn)+

1
2φ(Xi)

≥ φ(Xi − cn) and hence

for each Xi in the interval [−f, f ], P (θi = cn|Xi) ≥ φ(f + cn). Similarly For each Xi in

[cn − f, cn + f ] we also have P (θi = 0|Xi) ≥ φ(f + cn).

Now let pi = min(P (θi = 0|Xi), P (θi = cn|Xi)) and let p(j)(X) be the jth smallest of

these.

E(1(θ ∈ Can(X))) = EπPX|θ(θ ∈ Can(X)) ≤ EX

n−an�

j=1

(1− p(j)(X)) (95)

Also if n > M

EX

n−an�

j=1

(1−p(j)(X)) ≤ EX(
n−an�

j=1

(1−p(j)(X))|An(d))+(1−P (An(d)) ≤ (1−φ(f+cn))
dn−an+�

(96)

Hence

E(1(θ ∈ C(X))) ≤ (1− φ(f + cn))
dn−an + �+ (1− P (Bn(a))) (97)

Since c < 2 it also follows that for sufficiently large n

(1− φ(f + cn))
dn−an < � (98)

Hence for sufficiently large n

E(1(θ ∈ C(X))) ≤ 2�+ (1− P (Bn(a))) (99)
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Now if for all θ ∈ Θn

PX|θ(θ ∈ C(X)) ≥ 1− α (100)

it follows that for sufficiently large n

1− α ≤ E(1(θ ∈ C(X))) ≤ 2�+ (1− P (Bn(a))) (101)

and hence

P (Bn(a)) ≤ α+ 2� (102)

It then follows that there is a θ ∈ Θn such that

PX|θ(Bn(a)) ≤ α+ 2� (103)

For this θ it follows that for sufficiently large n

PX|θ(
n�

i=1

L(Ci(X)) ≥ an) ≥ 1− α− 2�. (104)

Since � is arbitrary (89) follows immediately. From (89) it is easy to see that (90) follows

immediately.

We now turn to the proof of (91) which without loss of generality we shall prove for θ =

θ0 = (0, 0, . . . 0) the zero vector. For this we need to do mixing. Let θi = (0, 0, . . . , 1, 0, . . . 0).

where 1 occurs in place i. Let Q = 1
n

�
n

i=1 P
X|θi . Denote by ψi the density of PX|θi for

i = 0, 1, ..., n, then straightforward calculations yield that for 1 ≤ i, j ≤ n
�

ψiψj

ψ0
= exp(δijc log n)

where δij = 1 if i = j and δij = 0 otherwise. Then the chi-squared distance between PX|θ0

and the mixture Q satisfies

χ2(PX|θ0 , Q) = EX|θ0
�

1
n

�
n

i
ψi

ψ0
− 1

�2

=
1

n2

n�

i,j=1

�
ψiψj

ψ0
−1 =

1

n
(exp(c log n)−1) ≤ n−(1−c).

In particular, χ(PX|θ0 , Q) → 0 for any constant 0 < c < 1. Consequently, the Total Variation

distance between PX|θ0 and Q satisfies

||PX|θ0 −Q||TV =
1

2

� �����ψ0 −
1

n

n�

i

ψi

����� ≤
1

2
χ(PX|θ0 , Q) → 0. (105)

When all the confidence intervals are of the same length θ0 ∈ C(X) when C(X) = θ0 or

when C(X) = ([0, 1], [0, 1], . . . , [0, 1]). Hence

PX|θ0(θ0 ∈ C(X)) = PX|θ0(C(X) = θ0) + PX|θ0(C(X) = ([0, 1], [0, 1], . . . , [0, 1])) (106)
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For any � > 0, from (105) it follows that there is an M such that for n > M

||PX|θ0 −Q||TV ≤ � (107)

Note that since C(X) is assumed to have coverage probability of at least 1− α it follows

that for i = 1, 2, . . . n

PX|θi(C(X) = θ0) < α (108)

and so

Q(C(X) = θ0) < α. (109)

Hence if n > M from (107) it follows that PX|θ0(C(X) = θ0) ≤ α+ �. Hence for n > M ,

PX|θ0(C(X) = ([0, 1], [0, 1], . . . , [0, 1])) ≥ 1− 2α− � and it follows that

EX|θ0(
�

L(Ci(X)) ≥ (1− 2α− �)n (110)

which proves (91).

In the proof of (92) we may without loss of generality also take θ0 = (0, 0, . . . , 0). For

any α < 1 choose c so that for each i = 1, . . . n, ||Pθ0 − Pθi ||TV ≤ � whenever n > M . Then

Pθi(Ci(X) < α) and hence Pθ0(Ci(X) = 0) ≤ α+ �. Hence Pθ0(Ci(X) = [0, 1]) ≥ 1− 2α− �.

and it follows that there is a C > 0 such that for each i, EL(Ci(X)) ≥ C which immediately

yields (92).

7.2 Proof of Theorem 2

Without loss of generality we shall assume the noise level σ = 1. Let g be an infinitely

differentiable function supported on [0, 1] with g(t) > 0 for t ∈ (0, 1) and
� 1
0 g2(t)dt = 1. For

instance, one can set

g(t) =





cg

�
exp

�
−1

t
e−

1
1−t

�
+ exp

�
− 1

1−t
e−

1
t

�
− 1

�
, t ∈ [0, 1],

0, otherwise.
(111)

Here, the normalizing constant cg
.
= 0.346.

Let m be a positive integer and set kn = n

m
. For ease of exposition we shall assume n is

divisible by m and so kn is an integer but all the arguments that follow hold under obvious

modifications if we take kn to be the integer part of n

m
. Set Akn = 1

kn

�
kn
j=1 g

2( j

kn
) and note

that Akn is bounded since g is bounded. Fix an f ∈ Λ(β,M �) with M � < M . Then for

θ = (θ1, θ2, . . . θm), define the function fθ by

fθ(t) = f(t) +
1

A
1
2
kn

m�

i=1

θic0(M −M �)m−βg(m(t− xi)) (112)
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where xi =
i−1
m

and c0 > 0 is a constant. Since Akn is bounded it is easy to verify that, when

the constant c0 is chosen sufficiently small, all realizations of f are in Λ(β,M). Let

Yi = (
1

Aknkn
)1/2

kn�

j=1

g(
j

kn
)(y(i−1)kn+j − f(xi +

j

n
)) (113)

Note that Y = (Y1, Y2, . . . Ym) is sufficient for θ. The Yi are independent and Normal with

E(Yi) = (
1

kn
)1/2

1

Akn

θi

kn�

j=1

c0(M −M �)m−βg2(
j

kn
) = c0(M −M �)θin

1
2m

−(2β+1)
2 (114)

and

V ar(Yi) =
1

Aknkn

kn�

j=1

g2(
j

kn
) = 1 (115)

We now prove (45) and (46). Here we take f(t) ≡ 0 in (112) in which case M � = 0. For

confidence intervals of fθ(t) over the class Θn we may restrict attention to confidence bands

CB(t) =
�

m

i=1Ci(Y ) 1

A

1
2
kn

c0Mm−βg(m(t− xi)) where Ci(Y ) is a confidence interval for θi.

Let γ =
� 1
0 g(t)dt. Then

� 1

0
m−βg(m(t− xi))dt = m−(β+1)γ. (116)

Hence � 1

0
CB(t) =

1

A
1
2
kn

c0Mm−(β+1)γ
m�

i=1

L(Ci(Y )) (117)

Now set m = �(M2
n

logn )
1

2β+1 �. Then

E(Yi) = c0θi
�
log n. (118)

Since c0 can be selected to be any positive real number take c0 < 1 such that fθ in (112)

is guaranteed to be in Λ(β,M). It follows from (89) that for any a < 1 there is an N such

that for n ≥ N

sup
θ∈Θn

P (

� 1

0
CB(t) ≥ 1

A
1
2
kn

c0Mm−(β+1)γam) ≥ 1− α− �. (119)

and from (90) that

sup
θ∈Θn

E(

� 1

0
CB(t)) ≥ C

1

A
1
2
kn

c0Mm−(β+1)γam. (120)

Since Mm−β = ( logn
n

)
β

2β+1 equation (45) and (46) immediately follow.
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We now turn to the proof of equation (48). Fix an f ∈ Λ(β,M �) with M � < M . Take

m = �( (M−M
�)2n

logn )
1

2β+1 �. Once again

E(Yi) = c0θi
�
log n (121)

and (48) follows from (91).

Finally take m = �((M −M �)2n)
1

2β+1 � and in this case

E(Yi) = c0θi (122)

and by taking a sufficiently small c0 (47) follows from (92).

8 Proofs of Propositions 2 and 3

This section is dedicated to the proofs of Propositions 2 and 3. To this end, we first investigate

a general form of the levelwise test in Section 8.1, followed by the proofs of both propositions

in Section 8.2.

8.1 General Levelwise Tests

After proper scaling (by a factor of σn = σn− 1
2 ), all the level-wise hypotheses H0,jl defined

in (31) share the same form as the following. Let Xi

ind∼ N(θi, 1), for i = 1, . . . ,m. We want

to test

H0 : max
1≤i≤m

|θi| ≤ cm. (123)

Here, n > m = 2l for some integer l < J , and cm is identified with some σ−1
n cjl. Depending

on (j, l), cm could range from O((logm)
1
2 ) to O(m−q) for some q > 0. On the other hand,

the test statistics that we use, after proper scaling, becomes maxi |Xi| and

Tm(tm) =
m�

i=1

|Xi|I{|Xi|>tm}, (124)

where tm depends on cm. Indeed, after proper scaling, the events in (34) become

R0 =

�
max

i

|Xi| > (
√
3 +

√
2)
�
log n

�
, (125)

R1 =
�
Tm(tm) > mµ(cm; tm) + 1

2(m log n)
1
2 [cm +

�
5
2 log n

� 1
2 ]
�
, and (126)

R2 =
�
Tm(1) > mµ(cm; 1) + [(1 + c2m)m log n]

1
2

�
, (127)

where µ is defined in (33) and tm = cm+(2r log n)
1
2 . The choice made after (32) corresponds

to r = log2m/(4 log n), which guarantees that r < 1/4 for all the relevant values of m when

n is sufficiently large.
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8.1.1 Control of Type I Errors

We first investigate the type I error of the rejection regions R0 ∪ R1 and R0 ∪ R2. To this

end, the following lemma is helpful.

Lemma 2. Suppose X ∼ N(θ, 1), then

Eθ|X|I{|X|>t} = µ(θ; t) = φ(t+ θ) + φ(t− θ) + θ[Φ(t+ θ)− Φ(t− θ)],

EθX
2I{|X|>t} = (t+ θ)φ(t− θ) + (t− θ)φ(t+ θ) + (θ2 + 1)[2− Φ(t− θ)− Φ(t+ θ)].

In addition, µ�(θ; t) = d

dθ
µ(θ; t) = t[φ(t− θ)− φ(t+ θ)] + Φ(t+ θ)− Φ(t− θ).

Proof. By symmetry, we consider only the case where θ ≥ 0.

For the first moment, we have

Eθ|X|I{|X|>t} =

� ∞

t

xφ(x− θ)dx+

� −t

−∞
(−x)φ(x− θ)dx.

For the first term, we have
� ∞

t

xφ(x− θ)dx =

� ∞

t−θ

yφ(y)dy + θ

� ∞

t−θ

φ(y)dy = φ(t− θ) + θ[1− Φ(t− θ)].

Note that the equality holds regardless of whether t ≥ θ. Similarly, we obtain
� −t

−∞(−x)φ(x−
θ)dx = φ(t+θ)−θ[1−Φ(t+θ)]. Putting the two parts together leads to the claimed formula.

Turn to the second moment. We have

EθX
2I{|X|>t} =

� ∞

t

x2φ(x− θ)dx+

� −t

−∞
x2φ(x− θ)dx.

Focus on the first term on the right side. We have
� ∞

t

x2φ(x− θ)dx =

� ∞

t

(x− θ)2φ(x− θ)dx+ 2θ

� ∞

t

(x− θ)φ(x− θ)dx+ θ2
� ∞

t

φ(x− θ)dx

= (t− θ)φ(t− θ) + [1− Φ(t− θ)] + 2θφ(t− θ) + θ2[1− Φ(t− θ)]

= (t+ θ)φ(t− θ) + (θ2 + 1)[1− Φ(t− θ)].

Here, the second equality uses the identity
�∞
t

x2φ(x)dx = tφ(t)+1−Φ(t). Again, the above

equalities hold regardless of whether t ≥ θ. By symmetry, we obtain an analogous expression

for the second term in the second last display. Combining the two parts, we obtain the

formula.

Finally, the last formula is obtained by directly differentiating the first expression with

respect to θ. This completes the proof.

Let θ = (θ1, . . . , θm)� ∈ Rm. For the rejection region R0 ∪ R1, we have the following

result.
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Lemma 3. There exists a constant C, such that for all m with cm ≤
√
2 log n, and all θ ∈ H0,

Pθ(R0 ∪R1) ≤ Cn− 1
2 .

Proof. Recall that tm = cm + (2r logm)
1
2 , r < 1

2 and n > m. Let bm = (52 log n)
1
2 >

(2r logm)
1
2 . Define Ui = |Xi|I{|Xi|>tm,|Xi|≤cm+bm}. For all θ ∈ H0 and any x > 0,

Pθ (Tm(tm)−mµ(cm; tm) > x)

≤ Pθ

�
m�

i=1

Ui −mµ(cm; tm) > x

�
+ Pθ (∃i, |Xi| > cm + bm) .

(128)

Under H0, we have Ui ∈ [0, cm + bm] and EUi ≤ µ(cm; tm). So, Hoeffding’s inequality leads

to

Pθ

�
m�

i=1

Ui −mµ(cm; tm) > x

�
≤ exp

�
− 2x2

m(cm + bm)2

�
.

In addition, a simple union bound leads to

Pθ (∃i, |Xi| > cm + bm) ≤
m�

i=1

Pθi(|Xi| > cm + bm) ≤ mP (|Z| > bm) ≤ 2m exp

�
−b2m

2

�
.

Here, Z stands for a standard normal random variable. We obtain Pθ(R1) ≤ Cn− 1
2 by fixing

x = 1
2(m log n)

1
2 [cm + (52 log n)

1
2 ] and bounding the two terms on the right side of (128) by

the last two displays.

In addition, since cm ≤
√
2 log n, for any θ ∈ H0, we have

Pθ(R0) ≤
m�

i=1

Pθi(|Xi| > (
√
3 +

√
2)
�
log n) ≤ mP (|Z| >

�
3 log n) ≤ Cn− 1

2 .

We completes the proof by noting that Pθ(R0 ∪R1) ≤ Pθ(R0) + Pθ(R1).

Turning to the rejection region R0 ∪R2, we focus on the cases where cm ≤ (log n)−
1
2 .

Lemma 4. There exists a constant C, such that for all m with cm ≤ (log n)−
1
2 , and all

θ ∈ H0, Pθ(R0 ∪R2) ≤ Cn− 1
2 .

Proof. We first show that Pθ(R2) ≤ Cn− 1
2 . Let Yi = |Xi|I{|Xi|>1} − E|Xi|I{|Xi|>1}, then

EYi = 0. When |θi| ≤ cm, EY 2
i
≤ EX2

i
= 1 + θ2

i
≤ 1 + c2m. Moreover, for any integer p ≥ 2,

E|Yi|p ≤ 2p−1[E|Xi|pI{|Xi|>1} + (E|Xi|I{|Xi|>1})
p] ≤ 2m−1[E|Xi|p + (E|Xi|)p].

Note that E|Xi| ≤
�
2/π + cm, and that

E|Xi|p ≤ 2p−1 (E|Xi − θi|p + |θi|p) ≤ 2p−1[(p− 1)!! + cpm].
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We thus have for all p ≥ 2,

E|Yi|p ≤ 4p−1(p− 1)!! + 4p−1cpm + 2p−1[
�
2/π + cm]p ≤ 1

2p! 3
p−2.

In the last inequality, we use the assumption that cm ≤ (log n)−
1
2 . Then for any x > 0 and

all θ ∈ H0, Bernstein’s inequality leads to

Pθ (Tm(1) > EθTm(1) + x) ≤ exp

�
−1

2

x2

(1 + c2m)m+ 3x

�
.

We complete the part by fixing x = [(1+ c2m)m log n]
1
2 and noting that EθTm(1) ≤ mµ(cm; 1)

for all θ ∈ H0.

On the other hand, we repeat as in the proof of Lemma 3 to conclude that Pθ(R0) ≤
Cn− 1

2 . This completes the proof.

8.1.2 Power of Tests

We now derive finite sample lower bounds for the power of the rejection regions R0 ∪R1 and

R0 ∪R2 against two different types of alternative hypotheses: the excess mass type and the

noncovered points type.

Excess mass type alternative In this case, we are interested in testing H0 against

H1 :
m�

i=1

�
|θi| − cm

�
+
> em. (129)

Lemma 5. Consider testing H0 (123) against H1 (129) based on the rejection region R0∪R1.

Suppose that (log n)−
1
2 ≤ cm ≤ C1(log n)

1
2 and that C2 logm ≥ log n. In tm, let r < 1

2 be a

fixed constant. If em = Cm(log n)−
1
2 for a sufficiently large constant C, then the power of

R0 ∪R1 is at least 1− C3 log n/m1−2r.

Proof. Recall that tm = cm + (2r logm)
1
2 . Let dm = exp(−cm(tm − 1

2cm)). We have

µ(0; tm) = E0|X|I{|X|>tm} = 2φ(tm) = 2(2π)−
1
2m−rdm.

In addition, write am = exp(−2cmtm), Lemma 2 leads to

µ�(cm; tm) ≥ (2π)−
1
2m−rtm(1− am).

Since µ(θ; tm) is increasing in |θ| when |θ| ≤ cm, we have

EθTm(tm)−mµ(cm; tm) ≥
�

|θi|>cm

[µ(|θi|; tm)− µ(cm; tm)]−m[µ(cN ; tm)− µ(0; tm)].
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Note that µ�(cm; tm) = inf |θ|≥cm
µ�(θ; tm) > 0, thus the first term on the right side is bounded

below by µ�(cm; tm)
�

i
(|θi| − cm)+ ≥ µ�(cm; tm)em. Together with the last three displays,

this leads to

EθTm(tm)−mµ(cm; tm) ≥ (2π)−
1
2m−r

�
tm(1− am)em −m

�
tm

tm − cm
+

amtm
tm + cm

− 2dm

��
.

Since cm ≥ (log n)−
1
2 , cmtm is bounded away from 0, and so 1 − am ≥ C4 for some positive

constant C4. In addition, cm ≤ C1(log n)
1
2 implies tm/(tm − cm) ≤ C5. Thus, for em =

Cm(log n)−
1
2 with a sufficiently large C, we obtain

EθTm(tm)−mµ(cm; tm) ≥ C6(C − C7)m
1−r ≥ 2B1m, (130)

where B1,m = 1
2(m log n)

1
2 [cm +

�
5
2 log n

� 1
2 ].

Moreover, cm ≤ C1(log n)
1
2 implies that tm ≤ C8(log n)

1
2 . This, together with Lemma 2,

implies that Varθ(|X|I{|X|>tm}) ≤ C9 log n for any θ. So, for any θ ∈ H1,

Varθ(Tm(tm)) ≤ C10m log n. (131)

Thus, for any θ ∈ H1, the type II error of R0 ∪R1 is

Pθ((R0 ∪R1)
c) ≤ Pθ (Rc

1) ≤ Pθ(Tm(tm)− EθTm(tm) ≤ −C6(K − C7)m
1−r +B1m).

To bound the right side, we apply Chebyshev’s inequality, together with (130) and (131), to

obtain Pθ(Rc

1) ≤ Varθ(Tm(tm))/[C6(K − C7)m1−r −B1m]2 ≤ C3 log n/m1−2r.

Lemma 6. Consider testing H0 (123) against H1 (129) based on the rejection region R0∪R2.

Suppose that C1(logm/m)1/4 ≤ cm ≤ (log n)−
1
2 and that C2 logm ≥ log n. If em = Cmcm

for a sufficiently large constant C, then the power of R0 ∪R2 is at least 1− C3n
− 1

2 .

Proof. Similar to the previous case, for any θ ∈ H1, we have

EθTm(1)−mµ(cm; 1) ≥
�

|θi|>cm

[µ(|θi|; 1)− µ(cm; 1)]−m[µ(cm; 1)− µ(0; 1)].

Lemma 2 leads to µ�(cm; 1) = infθ>cm µ�(θ; 1) = supθ∈[0,cm] µ
�(θ; 1) when cm ≤ 1/2. Thus, we

could further bound the right side of the last display and obtain

EθTm(1)−mµ(cm; 1) ≥ µ�(cm; 1)(em −mcm).

To further control the right side, note that Lemma 2 leads to µ�(cm; 1) ≥ 2cmφ(1 + cm) ≥
C4cm, and so for all θ ∈ H1,

EθTm(1)−mµ(cm; 1) ≥ C4(C − 1)mc2m. (132)

10



In addition, Lemma 2 implies that for all θ ∈ H1, C5m ≤ Varθ(Tm(1)) ≤ C6m.

To obtain the desired lower bound for power, we divide into two cases.

First, if maxi |θi| ≤ C7(log n)
1
2 , Lemma 2 implies that there exists t�m = C8(log n)

1
2 , such

that

Eθi |Xi|I{|Xi|>t�m}, EθiX
2
i I{|Xi|>t�m}, Pθ(max

i

|θi| > t�m) ≤ n−2. (133)

Now define

T �
m(1) = Tm(1)− Tm(t�m) =

�
|Xi|I{1<|Xi|≤t�m}. (134)

Then (133) leads to

EθT
�
m(1)−mµ(cm; 1) ≥ C �

4(C − 1)mc2m, C �
5m ≤ Varθ(T

�
m(1)) ≤ C �

6m. (135)

Let B2m = [(1 + c2m)m log n]
1
2 , then C �

4(C − 1)mc2m > 2B2m for sufficiently large C. Thus,

we can bound the probability of type II error of R2 as

Pθ(Rc

2) ≤ Pθ(T
�
m(1)−mµ(cm; 1) ≤ B2m) + Pθ(Tm(1) �= T �

m(1)).

For the first term, (135) and the discussion after it imply that it is bounded by

Pθ(T
�
m(1)− EθT

�
m(1) ≤ −1

2C
�
4(C − 1)mc2m).

Note that each summand in T �
m(1) is bounded by t�m, and so we could apply Bennett’s

inequality [this version due to Devroye and Lugosi (2001)] to bound the probability in the

last display by

exp

�
−Varθ(T �

m(1))

(t�m)2
g

�
t�mC �

5(C − 1)mc2m
2Varθ(T �

m(1))

��
,

where g(x) = (1 + x) log(1 + x)− x ≥ x2/4 for x ∈ (0, 1/2). Based on the above discussion,

the argument of g is of order O(m− 1
2 (log n)

1
2 ) = o(1). Thus, for a sufficiently large C,

Pθ(T
�
m(1)− EθT

�
m(1) ≤ −1

2C
�
4(C − 1)mc2m) ≤ exp

�
−C8(C − 1)2mc4m

�
≤ (C3/2)n

− 1
2 .

Further note that Pθ(Tm(1) �= T �
m(1)) ≤ Pθ(maxi |θi| > t�m) ≤ n−2. The triangle inequality

thus leads to Pθ(Rc

2) ≤ C3n
− 1

2 .

Next, if maxi |θi| > C7(log n)
1
2 for a large enough constant C7 > 2

√
2 +

√
3, then for

Z ∼ N(0, 1), Pθ(Rc

0) ≤ mP (|Z| >
√
3 log n) ≤ C3n

− 1
2 . This completes the proof.

Lemma 7. Consider testing H0 (123) against H1 (129) based on the rejection region R0∪R2.

Suppose that 0 < cm ≤ C1(logm/m)1/4 and that C2 logm ≥ log n. If em = Cm
3
4 (logm)

1
4 for

a sufficiently large constant C, then the power of R0 ∪R2 is at least 1− C3n
− 1

2 .

11



Proof. Let ηm = C

2 (logm/m)
1
4 > 2cm for sufficiently large C. Since em = Cm

3
4 (logm)

1
4 ,

we must have
�

|θi|>ηm
(|θi| − cm)+ ≥ em/2. For any θ ∈ H1, this leads to the bound

EθTm(1)−mµ(cm; 1) ≥
�

|θi|>ηm

[µ(|θi|; 1)− µ(cm; 1)]−m[µ(cm; 1)− µ(0; 1)].

Note that µ(θ; 1) is convex on [0, 1], so for any |θi| > ηm > 2cm,

µ(|θi|; 1)− µ(cm; 1) ≥ µ�(ηm/2; 1)(|θi| − cm).

Further note that µ�(cm; 1) = supθ∈[0,cm] µ
�(θ; 1), we thus obtain

EθTm(1)−mµ(cm; 1) ≥ µ�(ηm/2; 1)em/2−mcmµ�(cm; 1).

Lemma 2 implies that for some constant C4 > 0, µ�(ηm/2; 1) > C4ηm and µ�(cm; 1) ≥ C4cm.

This, together with the last display, implies

EθTm(1)−mµ(cm; 1) ≥ C5(C
2 − 1)(m log n)

1
2 .

Moreover, Lemma 2 also implies that for all θ ∈ H1, C6m ≤ Varθ(Tm(1)) ≤ C7m. The proof

could then be completed by repeating the two case argument in the proof of Lemma 6.

Noncovered points type alternative To deal with the set of noncovered points, we test

(123) against

H �
1 : m

−1|{θi : |θi| > c̃m}| > κm. (136)

For each m, c̃m > cm depends on the value of cm and is to be specified below.

Lemma 8. Consider testing H0 (123) against H �
1 (136) based on the rejection region R0∪R1.

Suppose that (log n)−
1
2 ≤ cm ≤ C1(log n)

1
2 and that C2 logm ≥ log n. In tm, let r < 1

2 be a

fixed constant. If in (136), c̃m = (γm+1)cm for some γm > 0 and κm = C(γmcm)−1(log n)−
1
2

for a sufficiently large constant C, then the power of R0 ∪R1 is at least 1−C3 log n/m1−2r.

Proof. Note that for any θ ∈ H �
1, (136) implies that

�
(|θi| − cm)+ > e�m = κmγmcmm = Cm(log n)−

1
2 .

Then Lemma 5 leads to the desired result.

Lemma 9. Consider testing H0 (123) against H �
1 (136) based on the rejection region R0∪R2.

Suppose that C1(logm/m)
1
4 ≤ cm ≤ (log n)−

1
2 and that C2 logm ≥ log n. If in (136),

c̃m = (γm + 1)cm for some γm > 0, κm = Cγ−1
m for a sufficiently large constant C, then

the power of R0 ∪R2 is at least 1− C3n
− 1

2 .
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Proof. Note that for any θ ∈ H �
1, (136) implies that

�

i

(|θi| − cm)+ > e�m = κmγmcmm = Cmcm.

Then Lemma 6 leads to the desired result.

Lemma 10. Consider testing H0 (123) against H �
1 (136) based on the rejection region R0 ∪

R2. Suppose that 0 < cm ≤ C1(logm/m)
1
4 and that C2 logm ≥ log n. If in (136), c̃m =

(γm+1)C1(logm/m)
1
4 for some γm > 0, κm = Cγ−1

m for a sufficiently large constant C, then

the power of R0 ∪R2 is at least 1− C3n
− 1

2 .

Proof. Note that for any θ ∈ H �
1, (136) implies that

�

i

(|θi| − cm)+ > e�m = κmγmcmm = CC1m
3
4 (logm)

1
4 .

Then Lemma 7 leads to the desired result.

8.2 Proof of Propositions 2 and 3

Proof of Proposition 2. After proper scaling by the factor σn = σn− 1
2 , Lemma 3 implies

that for any j and any j ≤ l < J , if f ∈ H0,jl, then Pf (R0,jl ∪ R1,jl) ≤ C �n− 1
2 . In addition,

Lemma 4 further implies that for all cjl ≤ σn(log n)
− 1

2 , when f ∈ H0,jl, Pf (R0,jl ∪ R2,jl) ≤
C �n− 1

2 . Combining the two bounds with the definition of φjl in (35), we obtain (56).

Turning to (57). Suppose for some (j, l), f ∈ H1,jl. Let j satisfy (26) for some β ∈ [β0, 2β0]

and M ∈ [1,M0]. We divide the discussion into three different cases as in (55).

In the first case, after proper scaling, we satisfy the condition of Lemma 5, which implies

Pf (R0,jl ∪R1,jl) ≥ 1− C � log n 2−l(1−2r) ≥ 1− C �2−l/2.

Here, the last inequality holds for all r < 1/4.

In the second case, after proper scaling, we satisfy the condition of Lemma 6. Thus,

Pf (R0,jl ∪R2,jl) ≥ 1− C �2−l/2.

In the third case, after proper scaling, we satisfy the condition of Lemma 7. Thus, we

also have Pf (R0,jl ∪R2,jl) ≥ 1− C �2−l/2. This completes the proof.

Proof of Proposition 3. Note that (61) is the same as (56), which has been proved in the

proof of Proposition 2. In what follows, we focus on (62). Suppose for some (j, l), f ∈ H1,jl.

Let j satisfy (26) for some β ∈ [β0, 2β0] and M ∈ [1,M0]. We divide the discussion into three

different cases as in (60).

In the first case, after proper scaling, we apply Lemma 8 with γm = (log n)−1/4 to obtain

Pf (R0,jl ∪R1,jl) ≥ 1− C � log n 2−l(1−2r) ≥ 1− C �2−l/2,

13



where the last inequality holds for r < 1/4.

In the second case, after proper scaling, we apply Lemma 9 with γm = 2
1
2β0(l−j) to obtain

Pf (R0,jl ∪R2,jl) ≥ 1− C �2−l/2.

In the third case, after proper scaling, we satisfy the condition of Lemma 10. So, we

apply Lemma 10 with γm = (log n)
β0

2(4β0+1) 2
1
8 (j

t−l) to obtain Pf (R0,jl ∪ R2,jl) ≥ 1 − C �2−l/2.

This completes the proof.

9 Proofs of Other Results

9.1 Proof of Lemma 1

Proof. For a vector ξ ∈ Rd, it is easy to check that
�

Rd

ψ2
ξ
(y)

φ0(y)
dy =

1

2
(e−�ξ�22/σ2

+ e�ξ�
2
2/σ

2
) ≤ exp

�
1

2σ4
�ξ�42

�
.

Hence,

�
h1(y)2

h0(y)
=

� m�

i=1

ψ2
γJi

(yJi)

φ0(yJi)
=

m�

i=1

� ψ2
γJi

(yJi)

φ0(yJi)
≤

m�

i=1

exp

�
1

2σ4
�γJi�42

�
= exp

�
1

2σ4

m�

i=1

�γJi�42

�
.

It then follows that

χ2(P0, P1) =

�
h1(y)2

h0(y)
− 1 ≤ exp

�
1

2σ4

m�

i=1

�γJi�42

�
− 1.

Now note that if
�

m

i=1 �γJi�42 ≤ 2σ4 log(1 + �20), then

χ2(P0, P1) ≤ exp

�
1

2σ4

m�

i=1

�γJi�42

�
− 1 ≤ �20.

Consequently, the L1 distance between P0 and P1 satisfies

L1(P0, P1) =

�
|h0 − h1| ≤ χ(P0, P1) ≤ �0.

Hence if P0(A) ≥ α, then P1(A) ≥ P0(A)− 1
2L1(P0, P1) ≥ α− 1

2�0 and the lemma follows.

9.2 Proof of (14)

We first introduce a lemma regarding the difference between f and fn. The proof is straight-

forward and can be found in, for instance, Cai (1996).

Lemma 11. Suppose f ∈ Λ(β,M) and the father wavelet φ has s ≥ β vanishing moments.

Let fn(t) =
�

n

k=1 n
−1/2f( k

n
)φJk(t). Then there exist a constant cφ depending only on the

wavelet, such that

sup
t

|f(t)− fn(t)| ≤ cφMn−β .

14



Proof of (14) Note that for any l < J and any 1 ≤ k ≤ 2l,

|θ̄lk − θlk| = |
�
(f(t)− fn(t))ψlk(t)dt|

≤
�

|f(t)− fn(t)||ψlk(t)|dt ≤ cφMn−β

�
2l/2|ψ(2l − t)|dt

≤ cφMn−β2−l/2�ψ�1 ≤ cψM2−(β+ 1
2 )l.

Here, the last inequality holds as 2l ≤ n for all l < J . This, together with (11), completes

the proof.
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