Supplement to “Adaptive Confidence Bands for Nonparametric
Regression Functions”

Abstract

This supplement contains the proofs of Theorem 2, Propositions 2 and 3, Lemma 1
and Eq.(14).

7 Proof of Theorem 2

Rather than prove Theorem 2 directly it is convenient to first prove an analogue of the
Theorem in the context of multivariate Normal random vectors. This is done in section 7.1.

The proof of Theorem 2 is then given in section 7.2

7.1 Confidence Bound For Multivariate Normal Vectors

In the first proposition let X;,7 = 1,2,...,n be independent Normal random variables,
N(cpb;i,1). Let X = (X1,X2,...Xy). Let 0 = (01,02,0,). For 6 given we shall write
PX0 and EXI? for computing probabilities and expectations under this model. We shall also
assume that each 6; is 0 or 1 and let ©,, be the collection of such parameter values.

Suppose that C(X) = (C1(X), Ca(X), Cr(X)) is a confidence set for 8 = (61,02,...,6,)
where C;(X) is a confidence interval for 6;. Let L(C;(X)) be the length of C;(X).

Proposition 4. Suppose that C(X) is a confidence set for § with uniform coverage of at
least 1 — « over ©,. Suppose ¢, = +/clogn with ¢ < 1. Then for any a < 1 and € > 0 there
is an M such that forn > M

sup PXO(Y "L(Ci(X)) = an) > (1 —a —¢) (89)
0€O,

and hence for any e > 0

sup EXP T LCi(X) = (1—a—en (90)

when n is sufficiently large.
If the confidence set C(X) also satisfies L(Ci(X)) = L(C1(X)) for all i then for any e > 0
there is an M such that for n > M and all 6 € O,

EXO(STL(G(X)) 2 (1—a—dn (91)

For any a < % there is a ¢ > O such that if ¢, = ¢ then for any e > 0 there is an M and
a C > 0 such that forn > M and all 6 € ©,

EXP(Y L(Ci(X)) = (1 - a—€)Cn (92)



Proof. First note that attention may be restricted to confidence bands where each C;(X)
is equal either to the single points 0 or ¢, or to the interval [0,c,]. Put an equally likely
independent prior on each coordinate and write 7 for this product prior. Write E for the
expectation taken with respect to the joint distribution of the 6; and the X; and P for
probabilities computed under such a model. Write E™ for the expected value with respect to
the prior and write EX for the expected value with respect to the marginal distribution of
the vector X.

Now for any confidence band C(X) let C!(X) be the band such that C(X) = CY(X)
whenever Y% | L(C;(X)) < l¢, and such that CY(X) = (0,0,...,0) otherwise. For any
0 < a < 1let By(a) be the event that Y ;" | L(C;(X)) < anc,. Then

E(1(0 € C(X))) < E(1(0 € C(X))1(Bn(a)))+(1-P(Bn(a))) < E(1(0 € C*(X)))+(1-P(Bn(a)))
(93)
Let

N=Y Uf <X < )4 Uen—f <X < ent ) (94)
=1

For any a < d < 1, let A,(d) be the event that N > dn. Note that the marginal
distribution of NV is binomial. Let f be any value such that for any ¢ > 0 if n > M,
P(A,(d)) > 1 —e. Write ¢ for the density function of a standard Normal random variable.
Since ¢(y) < 3 it follows that P(6; = c,|X;) = %qs()idi(jii)rg;(xﬁ > ¢(X; — ¢,) and hence
for each X; in the interval [—f, f], P(0; = cn|Xi) > ¢(f + ¢n). Similarly For each X; in
[cn — f,en + f] we also have P(0; = 0|X;) > o(f + cn).

Now let p; = min(P(0; = 0|X;), P(6; = ¢,|X;)) and let p(;)(X) be the jth smallest of
these.

E(1(0 € C(X))) = E"PXl(9 € C*(X)) < EX nﬁn(l —p( (X)) (95)
j=1
Alsoif n > M
X T (1-py (X)) < BX( [ (b (O An(d) +(1—P(An(@) < (1=(f+e0)) "+
j=1 Jj=1
(96)
Hence
E(1(0 € C(X))) < (1= (f + )™ " + e+ (1 — P(Bu(a))) (97)
Since ¢ < 2 it also follows that for sufficiently large n
(1= (f +en))™ " < e (98)
Hence for sufficiently large n
E(1(f e C(X))) <2e+ (1 — P(By(a))) (99)



Now if for all 8 € ©,,
PPoecx)>1-a (100)

it follows that for sufficiently large n
1—a<E10eC(X))) <2+ (1—P(Bp(a))) (101)

and hence
P(Bp(a)) < a+ 2¢ (102)

It then follows that there is a 6 € ©,, such that
PX(By,(a)) < a + 2¢ (103)

For this 0 it follows that for sufficiently large n

n
PYONY L(Ci(X)) > an) > 1 — o — 2e. (104)
i=1

Since € is arbitrary (89) follows immediately. From (89) it is easy to see that (90) follows
immediately.

We now turn to the proof of (91) which without loss of generality we shall prove for § =
6° = (0,0, ...0) the zero vector. For this we need to do mixing. Let §* = (0,0,...,1,0,...0).
where 1 occurs in place 7. Let QQ = %Z?:l PXI?" " Denote by ; the density of PX 9" for
1 =0,1,...,n, then straightforward calculations yield that for 1 <i,5 <n

= exp(d;;clogn
B0 p( ;€108 )

where §;; = 1 if i = j and 0;; = 0 otherwise. Then the chi-squared distance between pX1e°

and the mixture () satisfies

1 n 2 n
. o (13, L oy e

1,j=1

In particular, y(PX |90, Q) — 0 for any constant 0 < ¢ < 1. Consequently, the Total Variation

distance between PX19" and () satisfies

0 1 1 0
1PYI = Qv = 2/ < §X(PX|9 ,Q) = 0. (105)

1 n
1#0—;2%

When all the confidence intervals are of the same length 6° € C'(X) when C(X) = 6° or
when C'(X) = ([0,1],[0,1],...,[0,1]). Hence

PXIP° 0 € ¢(X)) = PXI?°(0(Xx) = 6°) + PXI?(C(X) = (0,1],[0,1],...,[0,1]))  (106)



For any € > 0, from (105) it follows that there is an M such that for n > M
I1PX” —Qllry < e (107)

Note that since C'(X) is assumed to have coverage probability of at least 1 — « it follows
that fori =1,2,...n

PXIP(C(X) =6 < (108)
and so
QIC(X)=6% <a. (109)
Hence if n > M from (107) it follows that PX1"(C(X) = 6°) < a + . Hence for n > M,
PXI?°(C(X) = ([0,1],]0,1],...,[0,1])) > 1 — 2a — € and it follows that
EXIP(ST L(Ci(X)) > (1 - 20— e)n (110)

which proves (91).

In the proof of (92) we may without loss of generality also take ° = (0,0,...,0). For
any o < 1 choose ¢ so that for each ¢ = 1,...n, ||Pypo — Pyi||7y < € whenever n > M. Then
Pyi(Ci(X) < ) and hence Pyo(Ci(X) =0) < a+ €. Hence Py (Ci(X) =1[0,1]) > 1 —2a —e.
and it follows that there is a C' > 0 such that for each i, EL(C;(X)) > C which immediately
yields (92).

7.2 Proof of Theorem 2

Without loss of generality we shall assume the noise level ¢ = 1. Let g be an infinitely
differentiable function supported on [0, 1] with g(¢) > 0 for ¢ € (0,1) and fol g*(t)dt = 1. For

instance, one can set

1 1
c (exp <—le_ﬁ) + exp (—%e_?) — 1) , t e (0,1],
gt)=1" t o o (111)
0, otherwise.

Here, the normalizing constant ¢, = 0.346.

Let m be a positive integer and set k, = -. For ease of exposition we shall assume n is

divisible by m and so k,, is an integer but all the arguments that follow hold under obvious

modifications if we take k, to be the integer part of . Set A, = é Zl?il gz(é) and note

that Ay, is bounded since g is bounded. Fix an f € A(S, M’) with M’ < M. Then for
0 = (01,62, ...0,), define the function fp by

folt) = 1)+ — > Bico(M = M)m~Pg(am( ~ z,) (112



where x; = % and ¢y > 0 is a constant. Since Ay, is bounded it is easy to verify that, when

the constant ¢g is chosen sufficiently small, all realizations of f are in A(S5, M). Let

¥i = ( 1/229 ) iyt — f(i+ ) (113)

Note that Y = (Y7, Y3,...Y},) is sufficient for §. The Y; are independent and Normal with

n

1 —_
2 L HZCOM M’)m*BgQ(k )= co(M — MYmn3m—2 2 (114)

B(Y) = ()4 :

and

Var(Y; Ak o Zg (115)

We now prove (45) and (46). Here we take f(t) =0 in (112) in which case M’ = 0. For
confidence intervals of fg( ) over the class ©,, we may restrict attention to confidence bands
CB(t)=>",C(Y ) T coMm™Bg(m(t — x;)) where C;(Y) is a confidence interval for 6;.

Let v = fo t)dt. Then

/ mPg(m(t — z;))dt = m~ P (116)
Hence
/ CB(t —(B+1) VZL (Y)) (117)
1=1
Now set m = [(f‘ggn)wH] Then
E(Y;) = cobi/logn. (118)

Since ¢y can be selected to be any positive real number take ¢y < 1 such that fy in (112)
is guaranteed to be in A(8, M). It follows from (89) that for any a < 1 there is an N such
that for n > N

sup P( / CB(t B ram) >1—a —e. (119)
OEGTL
and from (90) that
! 1
sup E( [ CB(t)) > C——coMm™ P Dram. (120)
€O, 0 AE

8
Since Mm% = (lo%)m equation (45) and (46) immediately follow.



We now turn to the proof of equation (48). Fix an f € A(8, M') with M' < M. Take

—_M")2n
m= R (Mlog/[n)

)25%} Once again
E(Y;) = cofiy/logn (121)
and (48) follows from (91).
Finally take m = [(M — M’)Qn)ﬁ] and in this case
E(Y;) = cob; (122)

and by taking a sufficiently small ¢y (47) follows from (92).

8 Proofs of Propositions 2 and 3

This section is dedicated to the proofs of Propositions 2 and 3. To this end, we first investigate
a general form of the levelwise test in Section 8.1, followed by the proofs of both propositions

in Section 8.2.

8.1 General Levelwise Tests

After proper scaling (by a factor of o, = a'rf%), all the level-wise hypotheses Hy j; defined
in (31) share the same form as the following. Let X ind N(0;,1), for i = 1,...,m. We want
to test

Hy : 0;] < ey, 12
0 122}§n| z|_Cm ( 3)

Here, n > m = 2! for some integer | < J, and ¢,, is identified with some aglcjl. Depending
on (j,1), ¢y could range from O((log m)%) to O(m~9) for some ¢ > 0. On the other hand,

the test statistics that we use, after proper scaling, becomes max; | X;| and

Ton(tm) = Z | Xl I x>t} (124)
=1

where t,, depends on ¢,,. Indeed, after proper scaling, the events in (34) become

Ro = {mzax 1 Xi| > (V3 + ﬂ)\/logn} , (125)
Ri= {Tm(tm) > mp(Cm;tm) + %(mlogn)%[cm + (2 logn)%]} , and (126)
Ry = {Tm(l) > mpt(em; 1) + [(1 + c2,)mlog n]%} , (127)

where p is defined in (33) and t,,, = ¢, + (21 log n)% The choice made after (32) corresponds
to r = logym/(4logn), which guarantees that r < 1/4 for all the relevant values of m when

n is sufficiently large.



8.1.1 Control of Type I Errors

We first investigate the type I error of the rejection regions Ro U R; and Rg U Ra. To this

end, the following lemma is helpful.

Lemma 2. Suppose X ~ N(0,1), then

ol X[I{| x>y = (05 t) = @t + 6) + ot — 0) + [P (t + 6) — 2(¢ — )],
Eo X2 I x> = (t+ 0)p(t — 0) + (t — 0)p(t + 6) + (0% + 1)[2 — (t — ) — D(t + 6)].

In addition, ' (0;t) = Lu(0;t) = t{p(t — 0) — ¢(t + 0)] + @(t + 0) — (t — ).

Proof. By symmetry, we consider only the case where 6 > 0.
For the first moment, we have

—t

E9|X’I{‘X|>t} = /t $(Z)(:13 — Q)dl’ + / (—x)¢(w — H)dx

[e.9]

For the first term, we have

| atte— o)z = [ yoty+0 [ sty = ot - 0) + 611 - o - o).

—0 t—0

Note that the equality holds regardless of whether ¢ > 6. Similarly, we obtain f:io(—:li)(b(l’ -
0)dx = ¢p(t+0)—0[1 — ®(t+0)]. Putting the two parts together leads to the claimed formula.
Turn to the second moment. We have

—t

EQXQI{‘X|>t} = / 22 ¢(x — 0)dx —|—/ 22 (z — 0)dz.
t

—00

Focus on the first term on the right side. We have

/too 2Pz — 0)dx = /too(a: —0)%¢(z — 0)dx + 26 /too(a; —0)p(z — 0)dx + 62 /too bz — 0)dz

=(t—0)p(t —0) +[L — Bt — 0)] +200(t — 0) + 6*[1 — D(t — 0)]
= (t+0)p(t—0)+ (6% + 1)1 — &t — 0)].

Here, the second equality uses the identity [ 2?¢(x)dx = t¢(t)+1—®(t). Again, the above
equalities hold regardless of whether ¢ > 0. By symmetry, we obtain an analogous expression
for the second term in the second last display. Combining the two parts, we obtain the
formula.

Finally, the last formula is obtained by directly differentiating the first expression with
respect to A. This completes the proof. W

Let @ = (61,...,0,,) € R™. For the rejection region Rg U Ry, we have the following

result.



Lemma 3. There exists a constant C', such that for all m with ¢, < v/2logn, and all @ € Hy,
Py(RoURy) < Cn 2.

Proof. Recall that t,, = ¢, + (2rlogm)%, r < 5 and n > m. Let b, = (glogn)% >

(2r logm)%. Define U; = | X;|I{|x,|>tm,|X:|<cm+bm}- For all @ € Hy and any x > 0,

Py (T (tm) — mu(cm; tm) > x)

i (128)
<Py (D Ui —mp(cmitm) >z | + Po (3i,|X;| > cm + bi) -

i=1

Under Hy, we have U; € [0, ¢y, + by and EU; < pu(cm;ty). So, Hoeffding’s inequality leads

to
Py iUi—mu(cm'tm)>x < exp —L )
i=1 7 B m(cm + b )?

In addition, a simple union bound leads to

m b2
Py (31, Xi| > e +bm) <D Po,(1Xil > e+ bm) < mP(1Z] > bm) < 2mexp (_;) '
i=1

Here, Z stands for a standard normal random variable. We obtain Py(R1) < Cn=2 by fixing
z = 3(mlog n)%[cm + (2 log n)%] and bounding the two terms on the right side of (128) by
the last two displays.

In addition, since ¢, < v/2logn, for any @ € Hy, we have

m

Py(Ro) < > P, (1Xi| > (V3 + V2)y/logn) < mP(|Z| > /3logn) < Cn" 2.

=1

We completes the proof by noting that Pp(RoUR1) < Pg(Ro) + Po(R1). R

Turning to the rejection region Ry U R2, we focus on the cases where ¢, < (log n)_%

Lemma 4. There exists a constant C, such that for all m with ¢, < (logn) %, and all

0 € Hy, Pg(RoURs) < Cn 2.

Proof. We first show that Pg(R2) < Cn~2. Let Y; = |X|I{x, 51} — E[Xi|I{jx,>1}, then
EY; = 0. When |0;| < ¢, EYf < EXi2 =1+ 0? < 1+ c2,. Moreover, for any integer p > 2,

E|Y;[? < 207V E|X; [P I x, 11 + (EIXa| I x,13)F] < 27 HEIXG[P + (E1XG))P).
Note that E|X;| < /2/7 + ¢, and that

EIXP < 2771 (B|X: — 6P + 6:/7) < 27 V(p — D) + &)



We thus have for all p > 2,

EIY;[P < 4P~ Hp — D) + 47 ek + 2071\ /2 /1 + ¢ )P < 3p! P72

In the last inequality, we use the assumption that ¢, < (logn) 3. Then for any x > 0 and

all 8 € Hy, Bernstein’s inequality leads to

1 z?
Py (T),(1) > EgT), (1) + ) < exp {—2(1 +2)m+ 3;5}'

We complete the part by fixing z = [(1+ ¢2,)mlog n]% and noting that EgT,, (1) < mpu(cm; 1)
for all 8 € Hy.

On the other hand, we repeat as in the proof of Lemma 3 to conclude that Pp(Rg) <
Cn~3. This completes the proof. H

8.1.2 Power of Tests

We now derive finite sample lower bounds for the power of the rejection regions Rg U R and
Ro URqe against two different types of alternative hypotheses: the excess mass type and the

noncovered points type.

Excess mass type alternative In this case, we are interested in testing Hy against

m

Hy: > (16i] = cm), > em. (129)

=1

Lemma 5. Consider testing Hy (123) against Hy (129) based on the rejection region RoUR1.
Suppose that (log n)_% < em < Cy(log n)% and that Cylogm > logn. In ty,, let r < % be a
fized constant. If e, = Cm(log n)fé for a sufficiently large constant C, then the power of
Ro U Ry is at least 1 — Cglogn/m!=2".

Proof. Recall that t,,, = ¢, + (2rlog m)% Let dp, = exp(—cm(tm — 3¢m)). We have

(03 tim) = Eo| X |(1x|51,1) = 20(tm) = 2(2m) " 2m " don.
In addition, write a,, = exp(—2¢,tn), Lemma 2 leads to
1 (Cmitm) > (20) " 2m "t (1 — apm).
Since p(6;ty,) is increasing in || when |0| < ¢, we have

EoTyn(tm) — mu(emitm) = Y [u(16il; tm) = p(cm; tm)] = mlp(ens tm) — p(0; tn)].
|0i]>cm



Note that pi'(cin;tm) = infg>c,, ' (0; tm) > 0, thus the first term on the right side is bounded
below by 1 (¢m;tm) >;(10i] — em)+ > 1/ (em;tm)em. Together with the last three displays,
this leads to

tm mtm
Eo T (tm) — mp(cmitm) > (27) " 2m " |tyn(1 — am)em — m (t + -2 - 2dm>] .

—Cm tm + Cm

Since ¢, > (log n)_%, Cmltm is bounded away from 0, and so 1 — a,, > C}y for some positive

constant C4. In addition, ¢, < Cl(logn)% implies t,,/(tm — ¢m) < Cs. Thus, for e, =

Cm(logn) 2 with a sufficiently large C, we obtain
EoTon(tm) — mu(cm;tm) > Cs(C — Cr)m ™" > 2By, (130)

1
where B, = (mlog n)%[cm + (3logn)?].

Moreover, ¢, < C1(log n)% implies that t,, < Cs(log n)% This, together with Lemma 2,
implies that Varg(|X|I{|x|>,1) < Cologn for any 6. So, for any 6 € Hy,

Varg(T(tm)) < Ciomlogn. (131)
Thus, for any 8 € Hy, the type II error of Rg UR is
Py((RoURL)E) < Py (RS) < Po(Tpn(tm) — EgTon(tm) < —Cs(K — C7r)m'™" + Biy,).

To bound the right side, we apply Chebyshev’s inequality, together with (130) and (131), to
obtain Pp(RS) < Varg(Tim(tm))/[Ce(K — C7)m!™" — Bim]* < Cslogn/m'=". ®

Lemma 6. Consider testing Hy (123) against Hy (129) based on the rejection region RoURz2.
Suppose that C1(log m/m)1/4 < ¢ < (log n)fé and that Cslogm > logn. If e, = Cmey,
for a sufficiently large constant C, then the power of Ro U Ro is at least 1 — an_%.

Proof. Similar to the previous case, for any 8 € Hy, we have

EoTm(1) — mu(em; 1) = > [u(|0:];1) = pa(ems )] — mfu(em; 1) — p(051)].
|0:]>cm

Lemma 2 leads to pi'(cy; 1) = infgse,, 1/(6;1) = supgepo,c,, #'(05 1) when ¢, < 1/2. Thus, we
could further bound the right side of the last display and obtain

EoTrm (1) — mu(cm; 1) > p' (em; 1) (em — mem)-

To further control the right side, note that Lemma 2 leads to p/(cm;1) > 2¢m@(1 + ¢p) >
Cycm, and so for all 8 € Hq,

EoTpm(1) — mu(cm; 1) > C4(C — 1)mc2,. (132)

10



In addition, Lemma 2 implies that for all @ € Hy, Csm < Varg(T,,(1)) < Cgm.
To obtain the desired lower bound for power, we divide into two cases.
First, if max; |0;| < Cr(log n)%, Lemma 2 implies that there exists t,, = Cs(log n)%, such
that
Bo.| Xil {1, 5t,)> Bo. X7 I, 51,y Po(max|0i] > £,) <n”%. (133)
Now define
Trln(l) = Tm(l) - Tm(t/m) = Z |Xz'|I{1<|Xi|§t;n}- (134)

Then (133) leads to

EoT),(1) — mu(cm; 1) > Cy(C — 1)me Citm < Varg(T}. (1)) < Cgm. (135)

2
m»

Let Boy, = [(1+ c2,)mlog n]%, then C}(C — 1)mc2, > 2By, for sufficiently large C. Thus,
we can bound the probability of type II error of Rs as

Po(R3) < Po(T},(1) — mp(em; 1) < Bam) + Py(Tin(1) # Ty, (1))
For the first term, (135) and the discussion after it imply that it is bounded by
Py(T;,(1) = EgTy, (1) < —5C4(C = 1)mey,).

Note that each summand in 7),(1) is bounded by ¢/ ,, and so we could apply Bennett’s
inequality [this version due to Devroye and Lugosi (2001)] to bound the probability in the

o {0, (5L )

where g(z) = (1 + z)log(1 +z) — x > 2%/4 for x € (0,1/2). Based on the above discussion,
the argument of ¢ is of order O(m_%(log n)%) = 0(1). Thus, for a sufficiently large C,

last display by

Po(T},(1) — EgT},(1) < —5C4(C — )me?,) < exp {~Cs(C — 1)*me,} < (Cs/2)n" =,

Further note that Py(T;,(1) 7& T!.(1)) < Pyg(max; |0;] > t,,) < n~2 The triangle inequality
thus leads to Pp(RS) < Can™ 2

Next, if max;|6;] > Cr(log n) for a large enough constant C7 > 2v/2 + /3, then for
Z ~ N(0,1), Pg(R§) <mP(|Z| > /3logn) < Csn~ 2. This completes the proof. MW

Lemma 7. Consider testing Hy (123) against Hy (129) based on the rejection regz'on ROURQ
Suppose that 0 < ¢, < C1(logm/m)Y* and that Cologm > logn. If ey, = Cmi (log m) for

a sufficiently large constant C, then the power of Ro U R is at least 1 — Csn™ 2.

11



Proof. Let 7, = %(log m/m)i > 2¢,, for sufficiently large C. Since e,, = Cm%(log m)i,
we must have 3\~ (|0i| — cm)+ = €m/2. For any 6 € Hy, this leads to the bound

EBTm(l) - mlu'(cm; 1) > Z [N(‘gz‘, 1) - N(Cm§ 1)] - m[M(Cm; 1) - /L(O; 1)]
10 |>1m

Note that p(6;1) is convex on [0, 1], so for any |6;| > 7 > 2¢m,
p(10i]; 1) — plems 1) = 1/ (0 /2; 1)(105] — em).
Further note that 1’ (ci; 1) = supgepo,, #'(6; 1), we thus obtain
EoTin(1) — mplcmi 1) > p' (11m /2 1em /2 — memp/ (cm; 1).

Lemma 2 implies that for some constant Cy > 0, /(9 /2;1) > Canp, and @/ (cpm; 1) > Cacp.
This, together with the last display, implies

EoTom(1) — mp(cm; 1) > C5(C2 — 1)(mlogn)?.

Moreover, Lemma 2 also implies that for all @ € Hy, Cem < Varg(T,,,(1)) < Cym. The proof

could then be completed by repeating the two case argument in the proof of Lemma 6. W

Noncovered points type alternative To deal with the set of noncovered points, we test
(123) against
Hy =m~Y{0; 2 10:] > ém}| > km. (136)

For each m, ¢, > ¢, depends on the value of ¢, and is to be specified below.

Lemma 8. Consider testing Hy (123) against H] (136) based on the rejection region RoyUR;.
Suppose that (log n)_% < em < Cy(log n)% and that Cylogm > logn. In ty,, letr < 3 be a
fized constant. If in (136), ¢ = (Ym +1)cm for some vy > 0 and Ky = C(Ymem)(log n)_%

for a sufficiently large constant C, then the power of Ro UR1 is at least 1 — C3logn/m!'=2".

Proof. Note that for any 6 € Hj, (136) implies that

_1
2-

Z(|07,| - cm)-‘r > e;n = EmYmCmIn = Cm<10g TZ)
Then Lemma 5 leads to the desired result. W

Lemma 9. Consider testing Hy (123) against H{ (136) based on the rejection region RoURs.
Suppose that Cl(logm/m)% < ey < (logn)_% and that Calogm > logn. If in (136),
ém = (Ym + Dem for some v > 0, Ky = Cy.b for a sufficiently large constant C, then
the power of Rog U Rq is at least 1 — anfé.

12



Proof. Note that for any 6 € Hy, (136) implies that

Z(\Gz\ —Cm)+ > € = EmYmCmm = Cmcy,.

)

Then Lemma 6 leads to the desired result. W

Lemma 10. Consider testing Hy (123) against H] (136) based on the rejection region Ro U
Ra. Suppose that 0 < ¢, < Cl(logm/m)% and that Cylogm > logn. If in (136), ¢y =
(Ym +1)C1(log m/m)i for some v, > 0, Ky, = Cy2b for a sufficiently large constant C, then
the power of Rog U Rq is at least 1 — an_%.

Proof. Note that for any 6 € Hy, (136) implies that

Z(]HZ] — Cm)+ > €y = EmYmCmMm = C’C’lm%(log m)i

2

Then Lemma 7 leads to the desired result. B

8.2 Proof of Propositions 2 and 3

Proof of Proposition 2. After proper scaling by the factor o, = mf%, Lemma 3 implies
that for any j and any j <1 < J, if f € Hyj;, then Pr(Ro i U Ry j1) < C'n~2. In addition,
Lemma 4 further implies that for all ¢;; < oy, (log n)_%, when f € Hyji, Pr(Roji U Raji) <
C'n~2. Combining the two bounds with the definition of ¢j1 in (35), we obtain (56).

Turning to (57). Suppose for some (j,1), f € Hy j. Let j satisfy (26) for some 8 € [0, 250]
and M € [1, My]. We divide the discussion into three different cases as in (55).

In the first case, after proper scaling, we satisfy the condition of Lemma 5, which implies
P¢(RojtU Ry ;1) >1—C'logn27/(1=21) > 1 ¢'271/2,

Here, the last inequality holds for all r < 1/4.

In the second case, after proper scaling, we satisfy the condition of Lemma 6. Thus,
Pi(RojiURyj) >1—C'271/2,

In the third case, after proper scaling, we satisfy the condition of Lemma 7. Thus, we
also have Py(Rg ;U Ry 1) > 1 — C'27Y2, This completes the proof. MW

Proof of Proposition 3. Note that (61) is the same as (56), which has been proved in the
proof of Proposition 2. In what follows, we focus on (62). Suppose for some (j,1), f € Hy ;.
Let j satisfy (26) for some 5 € [fo,205o] and M € [1, My]. We divide the discussion into three
different cases as in (60).

In the first case, after proper scaling, we apply Lemma 8 with v, = (log n)*l/ 4 to obtain

Pf(R()’jl U Rle) >1—-C' logn2_l(1_2r) >1- CIQ_Z/Q,
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where the last inequality holds for r < 1/4.

In the second case, after proper scaling, we apply Lemma 9 with ~,, = 92350(=3) o obtain
Pi(RojiURy ) >1—C'271/2,

In the third case, after proper scaling, we satisfy the condition of Lemma 10. So, we
apply Lemma 10 with ~,, = (log n)ﬁgﬂ)ﬁw*l) to obtain Pf(Rg j U Ry j1) > 1 — C'271/2,
This completes the proof. W

9 Proofs of Other Results

9.1 Proof of Lemma 1

Proof. For a vector £ € RY, it is easy to check that

/(/}g(y) 1 2 2 2 2 1
dy = L (e VEI3/0? 4 GlEI3/o?) < o ( 4),
2y =5 ) < exp ( goglel

Hence,

m

/ /H ¢0 YJ;) H/ ¢>0 YJ;) H <2}td‘"fyji‘|%> - (2;;”%””%> :

=1

It then follows that
2 1y 4
X (Fo, 1) / ho(y) R P Zi:l 112

Now note that if Y. | ||v., |3 < 20*1log(1 + €2), then

1 m
2 4 2
X" (Po, P1) < exp (204 ; Hm\b) -1 < €.

Consequently, the L1 distance between Py and P; satisfies

Ly(Po, P1) =/|h0—h1| < \(Py, P1) < €.

Hence if Py(A) > «, then Py(A) > Py(A) — 1L1(Py, Pi) > a— 3€o and the lemma follows. W

9.2 Proof of (14)

We first introduce a lemma regarding the difference between f and f,,. The proof is straight-

forward and can be found in, for instance, Cai (1996).

Lemma 11. Suppose f € A(B, M) and the father wavelet ¢ has s > [3 vanishing moments.
Let fo(t) = > 5,y n*1/2f(%)¢Jk(t). Then there exist a constant cy depending only on the

wavelet, such that
sup [£(t) = fa(t)] < coMn~P
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Proof of (14) Note that for any [ < J and any 1 < k < 2!,
0= 0l =1 [ (7(0) = Fu®)vntt)at|
< / [£(t) = Fa®) ()|t < cyMn~" / 222" —1)lat
< cgMn P2 2|y, < cwM2*(ﬁ+%)l.
Here, the last inequality holds as 2! < n for all [ < J. This, together with (11), completes
the proof. W
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