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Abstract

In this note, we provide proofs to Lemma 1, Lemma 3, and Eq.(72) of the paper. All the notation
follows the paper.

1 Proof of Lemma 1

In the proof, we focus on s*G(s) and s*G’(s). Results for quantities related to Gy follow, for Ay = O(1)
and G”(s) = sG(s).
Recall that G = %Ai. So, Eq.(61) and Eq.(62) of the paper imply that, for all s > 0,

2 43/2

[5G (5)], [s*G (5)] < CshH1/4e= 3" < CePs. (1)
If s9 < 0, we replace the constant C on the rightmost sides with

C(sp) = max{C, max |s*G(s)|, max [s"G’'(s)|},

s€[s0,0] s€[s0,0]

then the bounds in hold with C replaced by C(sg), uniformly for all s > sg. By definition, C(sq) is
continuous and non-increasing.

2 Proof of Lemma 3

Bound on [Ryy ()], For Ry (€) = (¢'(€)/ck) /2 with Gy = C'(¢,), we have
Riv(€) = — 5V )¢ ©). 2)

Thus, to derive the bound for |R ()|, we study (fy, ¢'(§) and ¢’ (€) in turn.
1° Consider (j first. Let my = m =+ % Simple calculus shows, as N — oo, if n/N — =, then
ny/ NV (ny + NP Y01 4 9)1/3

4/3 1/3 so- (3)
213 (14 /)

[

N =
21/3( /TL++ N+)

2° Switch to ¢/(£). Let £ = limy 00 &2 = 2 (1+ 7)° /(1 7).
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Assume first that s > 0. Then the LG transformation implies that %C3/2 = fé v/ f(z)dz. Hence, we
have

. ~1/3 . — ~1/3
c’(&)[i / \/f(Z)dZ] \/f(oB [ vee el vie

Note that (€, —&_)12/(26) < (z—€_)?/(22) < (€—€_)'/2/(2¢,). We thus obtain lower and upper bounds
for ¢’'(&) as
S (et S
22/35

which hold uniformly for s € I; . As N — oo, both bounds in (4) converge to the same limit 272/3(¢5°)~2/3(¢%°—
£>)1/3 = ¢! uniformly for s € I .

If 59 < 0, we focus on s € [sg, 0], for the above discussion is valid for all s € [0,5;N'/®). Now, the LG
transformation implies that 2(—()3/2 = f§+ Vv —f(z)dz. So

/ 5*5— 1/2
<O < e (@)

£y -1/3 €y - —-1/3
<’<§>=B / \/—f(Z)dZ] \/—f@):[‘;’ [ Ve Etel Ve

Here, we have /£ —&_/(261) < /2 —&-/(22) < /&4 —&-/(2€). Similar argument to the above then

shows that uniformly for s € [sg,0], ¢'(¢) = ¢, as N — oo.
Therefore, we conclude that, for C; < 1 < Cs,

C1¢l, < ¢'(€) < Ol (5)

uniformly for N > N(sg,v) and s € I1 n.

3° Now consider ("' (). To start with, we first derive a convenient representation for it. By the definition
of ¢, we have ((')? = f¢~!. Take derivative with respect to ¢ on both sides, and then divide both sides by

2¢’ to obtain
C// — fIC - fC/
20'¢2
Furthermore, we replace ¢ by f/(¢’)? to obtain
F'(€¢ () —¢(©)* [ —-¢©* 2¢
2f(¢) §—&+ §—¢&

For the three multipliers on the rightmost side, we have already studied ¢’. In what follows, we focus on the
other two terms.
First assume that sg > 0. We have

FO-CEO _TQ) 1 =&

E-& E-& @ 2
with Z(€) = (€ — £-)/(4€%) = ¢'(€)*. By (@), we have

-6 \"?le—¢ £\ €€
ll_(&f—) ] e SI@S(“&) e

So, when N > Ny(so,7), for all s € Iy n, |Z(£)/(£ —&4)] < (€ —€-)/€3. And hence,

J'(€) = ¢'(¢)?
§—¢&+

¢"(§) = = (&) (6)
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In addition, when N > Ny(so,7),

()] < (62— )P (e2)2/3,

2¢? ’< 4(6)?
4 —&-| T EF g

The last three bounds together imply that
(O < CEX) e — €)=y P+ ) P )Y (8)

uniformly for N > Ny(so,7) and s € I; n.
If s9 < 0, we just focus on s € [sg,0]. Using (7)), by similar argument as in the study of ¢’(€), we obtain
that also holds for this case.

Combining the three parts, we obtain that
Ry ()] < Oy 21 +7), 9)
uniformly for N > Ny(sp,7) and s € I1 n.
Bound on |Ry(§) —1|. By definition, we have £ = &4 + 6, n/KkN, With
GnN /N <AL+ 2B LA ) (14 9)TINTE = O(N TR,
By a first order Taylor expansion, we obtain

Ry (§) = Rn(&4) + Ry (€)(€ = &4),
for some &* lying between £ and £;. As Ry (§+) = 1, this implies Ry(§) — 1 = R\ (£§*)(§ — &4+). And so

Ry (€) =1 < RN €A+ 1/ym)"P (14 y7) (1) TIN 22
< 071/2(1 + 71/2)(1 + 771/2)1/3N*2/3|s|
S

uniformly for N > Ny(so,7) and s € I; y. The second inequality comes from @, and the last comes from
the fact that v > 1.

Bound on |m%3g —s|. Expanding n?ff(f) at &4 to the second order, we obtain
K3 (€)= K Cfin /oy + 5nn /) = KN G(E) + iy P Gn v Civs + Sy N (€752
Recall that ¢(£4) = 0 and that 5,171\7%;,1/3@“;\, = 1. We thus have

_ 16w ¢

_2 KN CJ/V

Ko 2C(€) — s

By previous discussion, we have &, x/ky = O(N~2/3) and ¢”(£*) /¢ = O(1), uniformly for s € I; 5. Thus,
we obtain
|/£?V/3(: — 5| <CON72/3¢2,

uniformly for N > Ny(so,7) and s € I x. Note that on I; v, |s| < s N/6 and hence we could modify the
above bound to
\R?V/SC — 5| < (CN72Bs) A 1ls| AL

This completes the proof of Lemma 3.



3 Proof of (72)

Bound on &, yky' |Ry/By|(€). Focus on |R)y/Ry|(£). By definition, we have

(Ry/Ry)(§) = (C"/C)( )=—* I + = \/ BRINAE

where I(v/f) = fér Vf. For f'/f, we have for all s € I y,

1 2 4 o 4/<LN RN
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On the other hand, we have

VIE) _ (6 £4)'?
I O L
(f‘f-&-)lﬂ 3 3 KN 4 —1/6 KN
= = N .
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Then, the triangle inequality shows that |R)/Rn|(€) is bounded by Cky /Gy, n, and so
rnGnNhy Ry /Ry|(€) < C,

uniformly for N > Ny(v), and s € Iz n.

Bound on RN(ﬁ)M(/@?V/SC). For this term, we first introduce the following lemma.

Lemma S.1. Let r > 0 be fived, * = xn(8) = fin.N + 80n.n, and € = z/ky. Then for s > r?,

Tn, NV f(&) 2 1€ /E = rfin, N/ (fin,N + 50,N)-
Proof. Observe that (£, —&-)/(4€}) = kn /G y- So, when s > 72,

I O (e o L (N S LU
o) = % ST R T S

We complete the proof by multiplying both sides with &, n.

1/65-1/2

we have

O

Note that Rn(§) = ky 0, 5 —1/4(¢), and that Eq.(62) of the paper implies that |M(/<;?V/3(:)| <
Cn;,l/ﬁg—l/‘* uniformly on I5 . Thus, as s; > 1, we apply Lemma ﬂ with » = 1 to obtain that

Ry(©M0) < CC V16, (27146 = of ()5, {7

- —1/2
<C (M) < Cs,
Hn,N + SOn, N

uniformly for s € Iy n.
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