Supplement to "Accuracy of the Tracy-Widom limits for the extreme eigenvalues in white White matrices"

Zongming Ma*

August 30, 2010

Abstract

In this note, we provide proofs to Lemma 1, Lemma 3, and Eq.(72) of the paper. All the notation follows the paper.

1 Proof of Lemma 1

In the proof, we focus on $s^{k} G(s)$ and $s^{k} G^{\prime}(s)$. Results for quantities related to G_{N} follow, for $\Delta_{N}=\mathrm{O}(1)$ and $G^{\prime \prime}(s)=s G(s)$.

Recall that $G=\frac{1}{\sqrt{2}}$ Ai. So, Eq.(61) and Eq.(62) of the paper imply that, for all $s \geq 0$,

$$
\begin{equation*}
\left|s^{k} G(s)\right|,\left|s^{k} G^{\prime}(s)\right| \leq C s^{k+1 / 4} e^{-\frac{2}{3} s^{3 / 2}} \leq C e^{-\beta s} \tag{1}
\end{equation*}
$$

If $s_{0}<0$, we replace the constant C on the rightmost sides with

$$
C\left(s_{0}\right)=\max \left\{C, \max _{s \in\left[s_{0}, 0\right]}\left|s^{k} G(s)\right|, \max _{s \in\left[s_{0}, 0\right]}\left|s^{k} G^{\prime}(s)\right|\right\}
$$

then the bounds in (1) hold with C replaced by $C\left(s_{0}\right)$, uniformly for all $s \geq s_{0}$. By definition, $C\left(s_{0}\right)$ is continuous and non-increasing.

2 Proof of Lemma 3

Bound on $\left|R_{N}^{\prime}(\xi)\right|$. For $R_{N}(\xi)=\left(\zeta^{\prime}(\xi) / \zeta_{N}^{\prime}\right)^{-1 / 2}$ with $\zeta_{N}^{\prime}=\zeta^{\prime}\left(\xi_{+}\right)$, we have

$$
\begin{equation*}
R_{N}^{\prime}(\xi)=-\frac{1}{2}\left(\zeta_{N}^{\prime}\right)^{1 / 2} \zeta^{\prime}(\xi)^{-3 / 2} \zeta^{\prime \prime}(\xi) \tag{2}
\end{equation*}
$$

Thus, to derive the bound for $\left|R_{N}^{\prime}(\xi)\right|$, we study $\zeta_{N}^{\prime}, \zeta^{\prime}(\xi)$ and $\zeta^{\prime \prime}(\xi)$ in turn.
1° Consider ζ_{N}^{\prime} first. Let $m_{ \pm}=m \pm \frac{1}{2}$. Simple calculus shows, as $N \rightarrow \infty$, if $n / N \rightarrow \gamma$, then

$$
\begin{equation*}
\zeta_{N}^{\prime}=\frac{n_{+}^{1 / 6} N_{+}^{1 / 6}\left(n_{+}+N_{+}\right)^{1 / 3}}{2^{1 / 3}\left(\sqrt{n_{+}}+\sqrt{N_{+}}\right)^{4 / 3}} \longrightarrow \frac{\gamma^{1 / 6}(1+\gamma)^{1 / 3}}{2^{1 / 3}(1+\sqrt{\gamma})^{4 / 3}}=\zeta_{\infty}^{\prime} \tag{3}
\end{equation*}
$$

2° Switch to $\zeta^{\prime}(\xi)$. Let $\xi_{ \pm}^{\infty}=\lim _{N \rightarrow \infty} \xi_{ \pm}=2(1 \pm \sqrt{\gamma})^{2} /(1+\gamma)$.

[^0]Assume first that $s \geq 0$. Then the LG transformation implies that $\frac{2}{3} \zeta^{3 / 2}=\int_{\xi^{+}}^{\xi} \sqrt{f(z)} d z$. Hence, we have

$$
\zeta^{\prime}(\xi)=\left[\frac{3}{2} \int_{\xi_{+}}^{\xi} \sqrt{f(z)} d z\right]^{-1 / 3} \sqrt{f(\xi)}=\left[\frac{3}{2} \int_{\xi_{+}}^{\xi} \sqrt{z-\xi_{+}} \cdot \frac{\sqrt{z-\xi_{-}}}{2 z} d z\right]^{-1 / 3} \sqrt{f(\xi)}
$$

Note that $\left(\xi_{+}-\xi_{-}\right)^{1 / 2} /(2 \xi) \leq\left(z-\xi_{-}\right)^{1 / 2} /(2 z) \leq\left(\xi-\xi_{-}\right)^{1 / 2} /\left(2 \xi_{+}\right)$. We thus obtain lower and upper bounds for $\zeta^{\prime}(\xi)$ as

$$
\begin{equation*}
\frac{\xi_{+}^{1 / 3}\left(\xi-\xi_{-}\right)^{1 / 3}}{2^{2 / 3} \xi} \leq \zeta^{\prime}(\xi) \leq \frac{\left(\xi-\xi_{-}\right)^{1 / 2}}{2^{2 / 3} \xi^{2 / 3}\left(\xi_{+}-\xi_{-}\right)^{1 / 6}} \tag{4}
\end{equation*}
$$

which hold uniformly for $s \in I_{1, N}$. As $N \rightarrow \infty$, both bounds in (4) converge to the same limit $2^{-2 / 3}\left(\xi_{+}^{\infty}\right)^{-2 / 3}\left(\xi_{+}^{\infty}-\right.$ $\left.\xi_{-}^{\infty}\right)^{1 / 3}=\zeta_{\infty}^{\prime}$, uniformly for $s \in I_{1, N}$.

If $s_{0}<0$, we focus on $s \in\left[s_{0}, 0\right]$, for the above discussion is valid for all $s \in\left[0, s_{1} N^{1 / 6}\right)$. Now, the LG transformation implies that $\frac{2}{3}(-\zeta)^{3 / 2}=\int_{\xi}^{\xi_{+}} \sqrt{-f(z)} d z$. So

$$
\zeta^{\prime}(\xi)=\left[\frac{3}{2} \int_{\xi}^{\xi_{+}} \sqrt{-f(z)} d z\right]^{-1 / 3} \sqrt{-f(\xi)}=\left[\frac{3}{2} \int_{\xi}^{\xi_{+}} \sqrt{\xi_{+}-z} \cdot \frac{\sqrt{z-\xi_{-}}}{2 z} d z\right]^{-1 / 3} \sqrt{-f(\xi)}
$$

Here, we have $\sqrt{\xi-\xi_{-}} /\left(2 \xi_{+}\right) \leq \sqrt{z-\xi_{-}} /(2 z) \leq \sqrt{\xi_{+}-\xi_{-}} /(2 \xi)$. Similar argument to the above then shows that uniformly for $s \in\left[s_{0}, 0\right], \zeta^{\prime}(\xi) \rightarrow \zeta_{\infty}^{\prime}$ as $N \rightarrow \infty$.

Therefore, we conclude that, for $C_{1}<1<C_{2}$,

$$
\begin{equation*}
C_{1} \zeta_{\infty}^{\prime} \leq \zeta^{\prime}(\xi) \leq C_{2} \zeta_{\infty}^{\prime} \tag{5}
\end{equation*}
$$

uniformly for $N \geq N\left(s_{0}, \gamma\right)$ and $s \in I_{1, N}$.
3° Now consider $\zeta^{\prime \prime}(\xi)$. To start with, we first derive a convenient representation for it. By the definition of ζ, we have $\left(\zeta^{\prime}\right)^{2}=f \zeta^{-1}$. Take derivative with respect to ξ on both sides, and then divide both sides by $2 \zeta^{\prime}$ to obtain

$$
\zeta^{\prime \prime}=\frac{f^{\prime} \zeta-f \zeta^{\prime}}{2 \zeta^{\prime} \zeta^{2}}
$$

Furthermore, we replace ζ by $f /\left(\zeta^{\prime}\right)^{2}$ to obtain

$$
\begin{equation*}
\zeta^{\prime \prime}(\xi)=\frac{f^{\prime}(\xi) \zeta^{\prime}(\xi)-\zeta^{\prime}(\xi)^{4}}{2 f(\xi)}=\zeta^{\prime}(\xi) \cdot \frac{f^{\prime}(\xi)-\zeta^{\prime}(\xi)^{3}}{\xi-\xi_{+}} \cdot \frac{2 \xi^{2}}{\xi-\xi_{-}} \tag{6}
\end{equation*}
$$

For the three multipliers on the rightmost side, we have already studied ζ^{\prime}. In what follows, we focus on the other two terms.

First assume that $s_{0} \geq 0$. We have

$$
\begin{equation*}
\frac{f^{\prime}(\xi)-\zeta^{\prime}(\xi)^{3}}{\xi-\xi_{+}}=\frac{\mathcal{I}(\xi)}{\xi-\xi_{+}}+\frac{1}{4 \xi^{2}}-\frac{\xi-\xi_{-}}{2 \xi^{3}} \tag{7}
\end{equation*}
$$

with $\mathcal{I}(\xi)=\left(\xi-\xi_{-}\right) /\left(4 \xi^{2}\right)-\zeta^{\prime}(\xi)^{3}$. By (4), we have

$$
\left[1-\left(\frac{\xi-\xi_{-}}{\xi_{+}-\xi_{-}}\right)^{1 / 2}\right] \frac{\xi-\xi_{-}}{4 \xi^{2}} \leq \mathcal{I}(\xi) \leq\left(1-\frac{\xi_{+}}{\xi}\right) \frac{\xi-\xi_{-}}{4 \xi^{2}}
$$

So, when $N \geq N_{0}\left(s_{0}, \gamma\right)$, for all $s \in I_{1, N},\left|\mathcal{I}(\xi) /\left(\xi-\xi_{+}\right)\right| \leq\left(\xi-\xi_{-}\right) / \xi^{3}$. And hence,

$$
\left|\frac{f^{\prime}(\xi)-\zeta^{\prime}(\xi)^{3}}{\xi-\xi_{+}}\right| \leq \frac{1}{4 \xi^{2}}+\frac{2\left(\xi-\xi_{-}\right)}{\xi^{3}} \leq \frac{9}{4 \xi^{2}} \leq \frac{C}{\left(\xi_{+}^{\infty}\right)^{2}}
$$

In addition, when $N \geq N_{0}\left(s_{0}, \gamma\right)$,

$$
\left|\zeta^{\prime}(\xi)\right| \leq\left(\xi_{+}^{\infty}-\xi_{-}^{\infty}\right)^{1 / 3}\left(\xi_{+}^{\infty}\right)^{-2 / 3}, \quad\left|\frac{2 \xi^{2}}{\xi_{+}-\xi_{-}}\right| \leq \frac{4\left(\xi_{+}^{\infty}\right)^{2}}{\xi_{+}^{\infty}-\xi_{-}^{\infty}}
$$

The last three bounds together imply that

$$
\begin{equation*}
\left|\zeta^{\prime \prime}(\xi)\right| \leq C\left(\xi_{+}^{\infty}\right)^{-2 / 3}\left(\xi_{+}^{\infty}-\xi_{-}^{\infty}\right)^{-2 / 3}=C \gamma^{-1 / 3}(1+\sqrt{\gamma})^{-4 / 3}(1+\gamma)^{4 / 3} \tag{8}
\end{equation*}
$$

uniformly for $N \geq N_{0}\left(s_{0}, \gamma\right)$ and $s \in I_{1, N}$.
If $s_{0}<0$, we just focus on $s \in\left[s_{0}, 0\right]$. Using (7), by similar argument as in the study of $\zeta^{\prime}(\xi)$, we obtain that (8) also holds for this case.

Combining the three parts, we obtain that

$$
\begin{equation*}
\left|R_{N}^{\prime}(\xi)\right| \leq C \gamma^{-1 / 2}(1+\gamma) \tag{9}
\end{equation*}
$$

uniformly for $N \geq N_{0}\left(s_{0}, \gamma\right)$ and $s \in I_{1, N}$.
Bound on $\left|R_{N}(\xi)-1\right|$. By definition, we have $\xi=\xi_{+}+s \tilde{\sigma}_{n, N} / \kappa_{N}$, with

$$
\tilde{\sigma}_{n, N} / \kappa_{N} \leq 4\left(1+\gamma^{-1 / 2}\right)^{1 / 3}\left(1+\gamma^{1 / 2}\right)(1+\gamma)^{-1} N^{-2 / 3}=\mathrm{O}\left(N^{-2 / 3}\right)
$$

By a first order Taylor expansion, we obtain

$$
R_{N}(\xi)=R_{N}\left(\xi_{+}\right)+R_{N}^{\prime}\left(\xi^{*}\right)\left(\xi-\xi_{+}\right)
$$

for some ξ^{*} lying between ξ and ξ_{+}. As $R_{N}\left(\xi_{+}\right)=1$, this implies $R_{N}(\xi)-1=R_{N}^{\prime}\left(\xi^{*}\right)\left(\xi-\xi_{+}\right)$. And so

$$
\begin{aligned}
\left|R_{N}(\xi)-1\right| & \leq\left|R_{N}^{\prime}\left(\xi^{*}\right)\right| 4(1+1 / \sqrt{\gamma})^{1 / 3}(1+\sqrt{\gamma})(1+\gamma)^{-1} N^{-2 / 3}|s| \\
& \leq C \gamma^{1 / 2}\left(1+\gamma^{1 / 2}\right)\left(1+\gamma^{-1 / 2}\right)^{1 / 3} N^{-2 / 3}|s| \\
& \leq C N^{-2 / 3}|s|
\end{aligned}
$$

uniformly for $N \geq N_{0}\left(s_{0}, \gamma\right)$ and $s \in I_{1, N}$. The second inequality comes from (9), and the last comes from the fact that $\gamma \geq 1$.

Bound on $\left|\kappa_{N}^{2 / 3} \zeta-s\right|$. Expanding $\kappa_{N}^{2 / 3} \zeta(\xi)$ at ξ_{+}to the second order, we obtain

$$
\kappa_{N}^{2 / 3} \zeta(\xi)=\kappa_{N}^{2 / 3} \zeta\left(\tilde{\mu}_{n, N} / \kappa_{N}+s \tilde{\sigma}_{n, N} / \kappa_{N}\right)=\kappa_{N}^{2 / 3} \zeta\left(\xi_{+}\right)+\kappa_{N}^{-1 / 3} \tilde{\sigma}_{n, N} \zeta_{N}^{\prime} s+\frac{1}{2} \kappa_{N}^{-4 / 3} \tilde{\sigma}_{n, N}^{2} \zeta^{\prime \prime}\left(\xi^{*}\right) s^{2}
$$

Recall that $\zeta\left(\xi_{+}\right)=0$ and that $\tilde{\sigma}_{n, N} \kappa_{N}^{-1 / 3} \zeta_{N}^{\prime}=1$. We thus have

$$
\kappa_{N}^{2 / 3} \zeta(\xi)-s=\frac{1}{2} \frac{\tilde{\sigma}_{n, N}}{\kappa_{N}} \frac{\zeta^{\prime \prime}\left(\xi^{*}\right)}{\zeta_{N}^{\prime}} s^{2}
$$

By previous discussion, we have $\tilde{\sigma}_{n, N} / \kappa_{N}=\mathrm{O}\left(N^{-2 / 3}\right)$ and $\zeta^{\prime \prime}\left(\xi^{*}\right) / \zeta_{N}^{\prime}=\mathrm{O}(1)$, uniformly for $s \in I_{1, N}$. Thus, we obtain

$$
\left|\kappa_{N}^{2 / 3} \zeta-s\right| \leq C N^{-2 / 3} s^{2}
$$

uniformly for $N \geq N_{0}\left(s_{0}, \gamma\right)$ and $s \in I_{1, N}$. Note that on $I_{1, N},|s| \leq s_{1} N^{1 / 6}$, and hence we could modify the above bound to

$$
\left|\kappa_{N}^{2 / 3} \zeta-s\right| \leq\left(C N^{-2 / 3} s^{2}\right) \wedge \frac{1}{2}|s| \wedge 1
$$

This completes the proof of Lemma 3.

3 Proof of (72)

Bound on $\tilde{\sigma}_{n, N} \kappa_{N}^{-1}\left|R_{N}^{\prime} / R_{N}\right|(\xi)$. Focus on $\left|R_{N}^{\prime} / R_{N}\right|(\xi)$. By definition, we have

$$
\left(R_{N}^{\prime} / R_{N}\right)(\xi)=-\frac{1}{2}\left(\zeta^{\prime \prime} / \zeta^{\prime}\right)(\xi)=-\frac{1}{4}\left(f^{\prime} / f\right)(\xi)+\frac{1}{6} \sqrt{f(\xi)} / I(\sqrt{f})
$$

where $I(\sqrt{f})=\int_{\xi_{+}}^{\xi} \sqrt{f}$. For f^{\prime} / f, we have for all $s \in I_{2, N}$,

$$
\left|\frac{f^{\prime}(\xi)}{f(\xi)}\right|=\left|\frac{1}{\xi-\xi_{+}}+\frac{1}{\xi-\xi_{-}}-\frac{2}{\xi}\right| \leq \frac{4}{\xi-\xi_{+}}=\frac{4 \kappa_{N}}{s \tilde{\sigma}_{n, N}} \leq C \frac{\kappa_{N}}{\tilde{\sigma}_{n, N}}
$$

On the other hand, we have

$$
\begin{aligned}
\frac{\sqrt{f(\xi)}}{I(\sqrt{f})} & =\frac{\left(\xi-\xi_{+}\right)^{1 / 2}}{\int_{\xi_{+}}^{\xi}\left(z-\xi_{+}\right)^{1 / 2} \frac{\xi\left(z-\xi_{-}\right)^{1 / 2}}{z\left(\xi-\xi_{-}\right)^{1 / 2}} d z} \\
& \leq \frac{\left(\xi-\xi_{+}\right)^{1 / 2}}{\int_{\xi_{+}}^{\xi}\left(z-\xi_{+}\right)^{1 / 2} d z}=\frac{3}{2\left(\xi-\xi_{+}\right)} \leq \frac{3}{2} \frac{\kappa_{N}}{\tilde{\sigma}_{n, N}} s_{1}^{-1} N^{-1 / 6} \leq C \frac{\kappa_{N}}{\tilde{\sigma}_{n, N}}
\end{aligned}
$$

Then, the triangle inequality shows that $\left|R_{N}^{\prime} / R_{N}\right|(\xi)$ is bounded by $C \kappa_{N} / \tilde{\sigma}_{n, N}$, and so

$$
r_{N} \tilde{\sigma}_{n, N} \kappa_{N}^{-1}\left|R_{N}^{\prime} / R_{N}\right|(\xi) \leq C,
$$

uniformly for $N \geq N_{0}(\gamma)$, and $s \in I_{2, N}$.
Bound on $R_{N}(\xi) \mathcal{M}\left(\kappa_{N}^{2 / 3} \zeta\right)$. For this term, we first introduce the following lemma.
Lemma S.1. Let $r>0$ be fixed, $x=x_{N}(s)=\tilde{\mu}_{n, N}+s \tilde{\sigma}_{n, N}$, and $\xi=x / \kappa_{N}$. Then for $s \geq r^{2}$, we have

$$
\tilde{\sigma}_{n, N} \sqrt{f(\xi)} \geq r \xi_{+} / \xi=r \tilde{\mu}_{n, N} /\left(\tilde{\mu}_{n, N}+s \tilde{\sigma}_{n, N}\right)
$$

Proof. Observe that $\left(\xi_{+}-\xi_{-}\right) /\left(4 \xi_{+}^{2}\right)=\kappa_{N} / \tilde{\sigma}_{n, N}^{3}$. So, when $s \geq r^{2}$,

$$
\sqrt{f(\xi)}=\frac{\left(\xi-\xi_{+}\right)^{1 / 2}\left(\xi-\xi_{-}\right)^{1 / 2}}{2 \xi} \geq r \frac{\tilde{\sigma}_{n, N}^{1 / 2}}{\kappa_{N}^{1 / 2}} \frac{\left(\xi_{+}-\xi_{-}\right)^{1 / 2}}{2 \xi_{+}} \frac{\xi_{+}}{\xi}=\frac{r \xi_{+}}{\tilde{\sigma}_{n, N} \xi}
$$

We complete the proof by multiplying both sides with $\tilde{\sigma}_{n, N}$.
Note that $R_{N}(\xi)=\kappa_{N}^{1 / 6} \tilde{\sigma}_{n, N}^{-1 / 2} \hat{f}^{-1 / 4}(\xi)$, and that Eq. (62) of the paper implies that $\left|\mathcal{M}\left(\kappa_{N}^{2 / 3} \zeta\right)\right| \leq$ $C \kappa_{N}^{-1 / 6} \zeta^{-1 / 4}$ uniformly on $I_{2, N}$. Thus, as $s_{1} \geq 1$, we apply Lemma S.1 with $r=1$ to obtain that

$$
\begin{aligned}
R_{N}(\xi) \mathcal{M}\left(\kappa_{N}^{2 / 3} \zeta\right) & \leq C \zeta^{-1 / 4} \tilde{\sigma}_{n, N}^{-1 / 2} \hat{f}^{-1 / 4}(\xi)=C f^{-1 / 4}(\xi) \tilde{\sigma}_{n, N}^{-1 / 2} \\
& \leq C\left(\frac{\tilde{\mu}_{n, N}}{\tilde{\mu}_{n, N}+s \tilde{\sigma}_{n, N}}\right)^{-1 / 2} \leq C s
\end{aligned}
$$

uniformly for $s \in I_{2, N}$.

[^0]: *E-mail: zongming@wharton.upenn.edu.

