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Abstract

In this note, we provide proofs to Lemma 1, Lemma 3, and Eq.(72) of the paper. All the notation
follows the paper.

1 Proof of Lemma 1

In the proof, we focus on skG(s) and skG′(s). Results for quantities related to GN follow, for ∆N = O(1)
and G′′(s) = sG(s).

Recall that G = 1√
2
Ai. So, Eq.(61) and Eq.(62) of the paper imply that, for all s ≥ 0,

|skG(s)|, |skG′(s)| ≤ Csk+1/4e−
2
3 s

3/2

≤ Ce−βs. (1)

If s0 < 0, we replace the constant C on the rightmost sides with

C(s0) = max{C, max
s∈[s0,0]

|skG(s)|, max
s∈[s0,0]

|skG′(s)|},

then the bounds in (1) hold with C replaced by C(s0), uniformly for all s ≥ s0. By definition, C(s0) is
continuous and non-increasing.

2 Proof of Lemma 3

Bound on |R′N (ξ)|. For RN (ξ) = (ζ ′(ξ)/ζ ′N )−1/2 with ζ ′N = ζ ′(ξ+), we have

R′N (ξ) = −1

2
(ζ ′N )1/2ζ ′(ξ)−3/2ζ ′′(ξ). (2)

Thus, to derive the bound for |R′N (ξ)|, we study ζ ′N , ζ ′(ξ) and ζ ′′(ξ) in turn.

1◦ Consider ζ ′N first. Let m± = m± 1
2 . Simple calculus shows, as N →∞, if n/N → γ, then

ζ ′N =
n
1/6
+ N

1/6
+ (n+ +N+)

1/3

21/3
(√
n+ +

√
N+

)4/3 −→ γ1/6(1 + γ)1/3

21/3
(
1 +
√
γ
)4/3 = ζ ′∞. (3)

2◦ Switch to ζ ′(ξ). Let ξ∞± = limN→∞ ξ± = 2
(
1±√γ

)2
/(1 + γ).
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Assume first that s ≥ 0. Then the LG transformation implies that 2
3ζ

3/2 =
∫ ξ
ξ+

√
f(z)dz. Hence, we

have

ζ ′(ξ) =

[
3

2

∫ ξ

ξ+

√
f(z)dz

]−1/3√
f(ξ) =

[
3

2

∫ ξ

ξ+

√
z − ξ+ ·

√
z − ξ−
2z

dz

]−1/3√
f(ξ).

Note that (ξ+−ξ−)1/2/(2ξ) ≤ (z−ξ−)1/2/(2z) ≤ (ξ−ξ−)1/2/(2ξ+). We thus obtain lower and upper bounds
for ζ ′(ξ) as

ξ
1/3
+ (ξ − ξ−)1/3

22/3ξ
≤ ζ ′(ξ) ≤ (ξ − ξ−)1/2

22/3ξ2/3(ξ+ − ξ−)1/6
, (4)

which hold uniformly for s ∈ I1,N . AsN →∞, both bounds in (4) converge to the same limit 2−2/3(ξ∞+ )−2/3(ξ∞+ −
ξ∞− )1/3 = ζ ′∞, uniformly for s ∈ I1,N .

If s0 < 0, we focus on s ∈ [s0, 0], for the above discussion is valid for all s ∈ [0, s1N
1/6). Now, the LG

transformation implies that 2
3 (−ζ)3/2 =

∫ ξ+
ξ

√
−f(z)dz. So

ζ ′(ξ) =

[
3

2

∫ ξ+

ξ

√
−f(z)dz

]−1/3√
−f(ξ) =

[
3

2

∫ ξ+

ξ

√
ξ+ − z ·

√
z − ξ−
2z

dz

]−1/3√
−f(ξ).

Here, we have
√
ξ − ξ−/(2ξ+) ≤

√
z − ξ−/(2z) ≤

√
ξ+ − ξ−/(2ξ). Similar argument to the above then

shows that uniformly for s ∈ [s0, 0], ζ ′(ξ)→ ζ ′∞ as N →∞.
Therefore, we conclude that, for C1 < 1 < C2,

C1ζ
′
∞ ≤ ζ ′(ξ) ≤ C2ζ

′
∞, (5)

uniformly for N ≥ N(s0, γ) and s ∈ I1,N .

3◦ Now consider ζ ′′(ξ). To start with, we first derive a convenient representation for it. By the definition
of ζ, we have (ζ ′)2 = fζ−1. Take derivative with respect to ξ on both sides, and then divide both sides by
2ζ ′ to obtain

ζ ′′ =
f ′ζ − fζ ′

2ζ ′ζ2
.

Furthermore, we replace ζ by f/(ζ ′)2 to obtain

ζ ′′(ξ) =
f ′(ξ)ζ ′(ξ)− ζ ′(ξ)4

2f(ξ)
= ζ ′(ξ) · f

′(ξ)− ζ ′(ξ)3

ξ − ξ+
· 2ξ2

ξ − ξ−
. (6)

For the three multipliers on the rightmost side, we have already studied ζ ′. In what follows, we focus on the
other two terms.

First assume that s0 ≥ 0. We have

f ′(ξ)− ζ ′(ξ)3

ξ − ξ+
=
I(ξ)

ξ − ξ+
+

1

4ξ2
− ξ − ξ−

2ξ3
, (7)

with I(ξ) = (ξ − ξ−)/(4ξ2)− ζ ′(ξ)3. By (4), we have[
1−

(
ξ − ξ−
ξ+ − ξ−

)1/2
]
ξ − ξ−

4ξ2
≤ I(ξ) ≤

(
1− ξ+

ξ

)
ξ − ξ−

4ξ2
.

So, when N ≥ N0(s0, γ), for all s ∈ I1,N , |I(ξ)/(ξ − ξ+)| ≤ (ξ − ξ−)/ξ3. And hence,∣∣∣∣f ′(ξ)− ζ ′(ξ)3ξ − ξ+

∣∣∣∣ ≤ 1

4ξ2
+

2(ξ − ξ−)

ξ3
≤ 9

4ξ2
≤ C

(ξ∞+ )2
.
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In addition, when N ≥ N0(s0, γ),

|ζ ′(ξ)| ≤
(
ξ∞+ − ξ∞−

)1/3
(ξ∞+ )−2/3,

∣∣∣∣ 2ξ2

ξ+ − ξ−

∣∣∣∣ ≤ 4(ξ∞+ )2

ξ∞+ − ξ∞−
.

The last three bounds together imply that

|ζ ′′(ξ)| ≤ C(ξ∞+ )−2/3(ξ∞+ − ξ∞− )−2/3 = Cγ−1/3(1 +
√
γ)−4/3(1 + γ)4/3, (8)

uniformly for N ≥ N0(s0, γ) and s ∈ I1,N .
If s0 < 0, we just focus on s ∈ [s0, 0]. Using (7), by similar argument as in the study of ζ ′(ξ), we obtain

that (8) also holds for this case.

Combining the three parts, we obtain that

|R′N (ξ)| ≤ Cγ−1/2(1 + γ), (9)

uniformly for N ≥ N0(s0, γ) and s ∈ I1,N .

Bound on |RN (ξ)− 1|. By definition, we have ξ = ξ+ + sσ̃n,N/κN , with

σ̃n,N/κN ≤ 4(1 + γ−1/2)1/3(1 + γ1/2)(1 + γ)−1N−2/3 = O(N−2/3).

By a first order Taylor expansion, we obtain

RN (ξ) = RN (ξ+) +R′N (ξ∗)(ξ − ξ+),

for some ξ∗ lying between ξ and ξ+. As RN (ξ+) = 1, this implies RN (ξ)− 1 = R′N (ξ∗)(ξ − ξ+). And so

|RN (ξ)− 1| ≤ |R′N (ξ∗)|4 (1 + 1/
√
γ)

1/3
(1 +

√
γ) (1 + γ)−1N−2/3|s|

≤ Cγ1/2(1 + γ1/2)(1 + γ−1/2)1/3N−2/3|s|
≤ CN−2/3|s|,

uniformly for N ≥ N0(s0, γ) and s ∈ I1,N . The second inequality comes from (9), and the last comes from
the fact that γ ≥ 1.

Bound on |κ2/3N ζ − s|. Expanding κ
2/3
N ζ(ξ) at ξ+ to the second order, we obtain

κ
2/3
N ζ(ξ) = κ

2/3
N ζ(µ̃n,N/κN + sσ̃n,N/κN ) = κ

2/3
N ζ(ξ+) + κ

−1/3
N σ̃n,Nζ

′
Ns+ 1

2κ
−4/3
N σ̃2

n,Nζ
′′(ξ∗)s2.

Recall that ζ(ξ+) = 0 and that σ̃n,Nκ
−1/3
N ζ ′N = 1. We thus have

κ
2/3
N ζ(ξ)− s =

1

2

σ̃n,N
κN

ζ ′′(ξ∗)

ζ ′N
s2.

By previous discussion, we have σ̃n,N/κN = O(N−2/3) and ζ ′′(ξ∗)/ζ ′N = O(1), uniformly for s ∈ I1,N . Thus,
we obtain

|κ2/3N ζ − s| ≤ CN−2/3s2,

uniformly for N ≥ N0(s0, γ) and s ∈ I1,N . Note that on I1,N , |s| ≤ s1N1/6, and hence we could modify the
above bound to

|κ2/3N ζ − s| ≤ (CN−2/3s2) ∧ 1
2 |s| ∧ 1.

This completes the proof of Lemma 3.
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3 Proof of (72)

Bound on σ̃n,Nκ
−1
N |R′N/RN |(ξ). Focus on |R′N/RN |(ξ). By definition, we have

(R′N/RN )(ξ) = −1

2
(ζ ′′/ζ ′)(ξ) = −1

4
(f ′/f)(ξ) +

1

6

√
f(ξ)/I(

√
f),

where I(
√
f) =

∫ ξ
ξ+

√
f . For f ′/f , we have for all s ∈ I2,N ,∣∣∣∣f ′(ξ)f(ξ)

∣∣∣∣ =

∣∣∣∣ 1

ξ − ξ+
+

1

ξ − ξ−
− 2

ξ

∣∣∣∣ ≤ 4

ξ − ξ+
=

4κN
sσ̃n,N

≤ C κN
σ̃n,N

.

On the other hand, we have√
f(ξ)

I(
√
f)

=
(ξ − ξ+)1/2∫ ξ

ξ+
(z − ξ+)1/2 ξ(z−ξ−)1/2

z(ξ−ξ−)1/2
dz

≤ (ξ − ξ+)1/2∫ ξ
ξ+

(z − ξ+)1/2dz
=

3

2(ξ − ξ+)
≤ 3

2

κN
σ̃n,N

s−11 N−1/6 ≤ C κN
σ̃n,N

.

Then, the triangle inequality shows that |R′N/RN |(ξ) is bounded by CκN/σ̃n,N , and so

rN σ̃n,Nκ
−1
N |R

′
N/RN |(ξ) ≤ C,

uniformly for N ≥ N0(γ), and s ∈ I2,N .

Bound on RN (ξ)M(κ
2/3
N ζ). For this term, we first introduce the following lemma.

Lemma S.1. Let r > 0 be fixed, x = xN (s) = µ̃n,N + sσ̃n,N , and ξ = x/κN . Then for s ≥ r2, we have

σ̃n,N
√
f(ξ) ≥ rξ+/ξ = rµ̃n,N/(µ̃n,N + sσ̃n,N ).

Proof. Observe that (ξ+ − ξ−)/(4ξ2+) = κN/σ̃
3
n,N . So, when s ≥ r2,

√
f(ξ) =

(ξ − ξ+)1/2(ξ − ξ−)1/2

2ξ
≥ r

σ̃
1/2
n,N

κ
1/2
N

(ξ+ − ξ−)1/2

2ξ+

ξ+
ξ

=
rξ+
σ̃n,Nξ

.

We complete the proof by multiplying both sides with σ̃n,N .

Note that RN (ξ) = κ
1/6
N σ̃

−1/2
n,N f̂−1/4(ξ), and that Eq.(62) of the paper implies that |M(κ

2/3
N ζ)| ≤

Cκ
−1/6
N ζ−1/4 uniformly on I2,N . Thus, as s1 ≥ 1, we apply Lemma S.1 with r = 1 to obtain that

RN (ξ)M(κ
2/3
N ζ) ≤ Cζ−1/4σ̃−1/2n,N f̂−1/4(ξ) = Cf−1/4(ξ)σ̃

−1/2
n,N

≤ C
(

µ̃n,N
µ̃n,N + sσ̃n,N

)−1/2
≤ Cs,

uniformly for s ∈ I2,N .
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