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Abstract

Latent space models are effective tools for statistical modeling and visualization of network
data. Due to their close connection to generalized linear models, it is also natural to incorporate
covariate information in them. The current paper presents two universal fitting algorithms for
networks with edge covariates: one based on nuclear norm penalization and the other based
on projected gradient descent. Both algorithms are motivated by maximizing the likelihood
function for an existing class of inner-product models, and we establish their statistical rates
of convergence for these models. In addition, the theory informs us that both methods work
simultaneously for a wide range of different latent space models that allow latent positions to
affect edge formation in flexible ways, such as distance models. Furthermore, the effectiveness of
the methods is demonstrated on a number of real world network datasets for different statistical
tasks, including community detection with and without edge covariates, and network assisted
learning.

Keywords: community detection, network with covariates, non-convex optimization, projected
gradient descent.

1 Introduction

Network is a prevalent form of data for quantitative and qualitative analysis in a number of fields,
including but not limited to sociology, computer science, neuroscience, etc. Moreover, due to
advances in science and technology, the sizes of the networks we encounter are ever increasing.
Therefore, to explore, to visualize and to utilize the information in large networks poses significant
challenges to Statistics. Unlike traditional datasets in which a number of features are recorded
for each subject, network datasets provide information on the relation among all subjects under
study, sometimes together with additional features. In this paper, we focus on networks in which
additional features might be observed for each node pair.

An efficient way to extract key information from network data is to fit appropriate statistical
models on them. To date, there have been a collection of network models proposed by researchers
in various fields. These models aim to catch different aspects of network characteristics, and
Goldenberg et al. [29] provides a comprehensive overview. An important class of network models
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are latent space models which was proposed in an influential paper by Hoff et al. [34]. Suppose
there are n nodes in the observed network. The key idea underlying latent space modeling is
that each node i can be represented by a vector zi in some low dimensional Euclidean space (or
some other metric space of choice, see e.g. [41, 6] for latent spaces with negative curvature) that
is sometimes called the social space, and nodes that are “close” in the social space are more likely
to be connected. Hoff et al. [34] considered two types of latent space models: distance models and
projection models. In both cases, the latent vectors tziu

n
i“1 were treated as fixed effects. Later,

a series of papers [31, 30, 33, 43] generalized the original proposal in [34] for better modeling
of other characteristics of social networks, such as clustering, degree heterogeneity, etc. In these
generalizations, the zi’s were treated as random effects generated from certain multivariate Gaussian
mixtures. Moreover, model fitting and inference in these models has been carried out via Markov
Chain Monte Carlo, and it is difficult to scale these methodologies to handle large networks [29]. In
addition, one needs to use different likelihood function based on choice of model and there is little
understanding of the quality of fitting when the model is mis-specified. Albeit these disadvantages,
latent space models are attractive due to their friendliness to interpretation and visualization.

For concreteness, assume that we observe an undirected network represented by a symmetric
adjacency matrix A on n nodes with Aij “ Aji “ 1 if nodes i and j are connected and zero otherwise.
In addition, we may also observe a symmetric pairwise covariate matrix X which measures certain
characteristics of node pairs. We do not allow self-loop and so we set the diagonal elements of the
matrices A and X to be zeros. The covariate Xij can be binary, such as an indicator of whether
nodes i and j share some common attribute (e.g. gender, location, etc) or it can be continuous, such
as a distance/similarity measure (e.g. difference in age, income, etc). It is relatively straightforward
to generalize the methods and theory in this paper to multiple covariates.

1.1 Main contributions

The main contributions of the present paper are the following.

1. We first consider an existing class of latent space models, called inner-product models [31, 32],
and design two new fitting algorithms for this class. Let the observed n-by-n adjacency matrix
and covariate matrix be A and X, respectively. The inner-product model assumes that for
any i ă j,

Aij “ Aji
ind.
„ BernoullipPijq, with

logitpPijq “ Θij “ αi ` αj ` βXij ` z
J
i zj ,

(1)

where for any x P p0, 1q, logitpxq “ logrx{p1´ xqs. Here, αi, 1 ď i ď n, are parameters
modeling degree heterogeneity. The parameter β is the coefficient for the observed covariate,
and zJi zj is the inner-product between the latent vectors. From a matrix estimation viewpoint,
the matrix G “ pGijq “ pzJi zjq is of rank at most k that can be much smaller than n.
Motivated by recent advances in low rank matrix estimation, we design two algorithms for
fitting (1). One algorithm is based on lifting and nuclear norm penalization of the negative
log-likelihood function. The other is based on directly optimizing the negative log-likelihood
function via projected gradient descent. The methods can be used to fit these models on
networks with thousands of nodes easily on any reasonable personal computer and has the
potential to scale to even larger networks. For both algorithms, we establish high probability
error bounds for inner-product models. The connection between model (1) and the associated
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algorithms and other related work in the literature will be discussed immdediately in next
subsection.

2. More importantly, we further show that these two fitting algorithms are “universal” in the
sense that they can work simultaneously for a wide range of latent space models beyond the
inner-product model class. For example, they work for the distance model and the Gaussian
kernel model in which the inner-product term zJi zj in (1) is replaced with ´}zi ´ zj} and
c expp´}zi´zj}

2{σ2q, respectively. Thus, the class of inner-product models is flexible and can
be used to approximate many other latent space models of interest. In addition, the associated
algorithms can be applied to networks generated from a wide range of mis-specified models
and still yield reasonable results. The key mathematical insight that enables such universality
is introduced in Section 2 as the Schoenberg Condition (7).

3. We demonstrate the effectiveness of the model and algorithms on real data examples. In
particular, we fit inner-product models by the proposed algorithms on five different real
network datasets for several different tasks, including visualization, clustering and network-
assisted classification. On three popular benchmark datasets for testing community detection
on networks, a simple k-means clustering on the estimated latent vectors obtained by our
algorithm yields as good result on one dataset and better results on the other two when
compared with four state-of-the-art methods. The same “model fitting followed by k-means
clustering” approach also yields nice clustering of nodes on a social network with edge
covariates. Due to the nature of latent space models, for all datasets on which we fit the model,
we obtain natural visualizations of the networks by plotting latent positions. Furthermore,
we illustrate how network information can be incorporated in traditional learning problems
using a document classification example.

A Matlab implementation of the methods in the present paper is available upon request.

1.2 Other related works and issues

The current form of the inner-product model (1) has previously appeared in Hoff [31] and Hoff
[32], though the parameters were modeled as random effects rather than fixed values, and Bayesian
approaches were proposed for estimating variance parameters of the random effects. Hoff [33]
proposed a latent eigenmodel which has a probit link function as opposed to the logistic link
function in the present paper. As in [31] and [32], parameters were modeled as random effects and
model fitting was through Bayesian methods. It was shown that the eigenmodel weakly generalizes
the distance model in the sense that the order of the entries in the latent component can be
preserved. This is complementary to our results which aim to approximate the latent component
directly in some matrix norm. An advantage of the eigenmodel is its ability to generalize the latent
class model, whereas the inner-product model (1) and the more general model we shall consider
generalize a subset of latent class models due to the constraint that the latent component (after
centering) is positive semi-definite. We shall return to this point later in Section 7. Young and
Scheinerman [63] proposed a random dot product model, which can be viewed as an inner-product
model with identity link function. The authors studied a number of properties of the model, such
as diameter, clustering and degree distribution. See also [56] for some statistical theory for this
model. Tang et al. [57] studied properties of the leading eigenvectors of the adjacency matrices
of latent positions graphs (together with its implication on classification in such models) where
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the connection probability of two nodes is the value that some universal kernel [49] takes on the
associated latent positions and hence generalizes the random dot product model. This work is
close in spirit to the present paper. However, there are several important differences. First, the
focus here is model fitting/parameter estimation as opposed to classification in [57]. In addition,
any universal kernel considered in [57] satisfies the Schoenberg condition (7) and thus is covered
by the methods and theory of the present paper, and so we cover a broader range of models that
inner-product models can approximate. This is also partially due to the different inference goals.
Furthermore, we allow the presence of observed covariates while [57] did not.

When fitting a network model, we are essentially modeling and estimating the edge probability
matrix. From this viewpoint, the present paper is related to the literautre on graphon estimation
and edge probability matrix estimation for block models. See, for instance, [7, 4, 61, 25, 39, 27]
and the references therein. However, the block models have stronger structural assumptions than
the latent space models we are going to investigate.

The algorithmic and theoretical aspects of the paper is also closely connected to the line of
research on low rank matrix estimation, which plays an important role in many applications such
as phase retrieval [14, 15] and matrix completion [13, 37, 38, 12, 40]. Indeed, the idea of nuclear
norm penalization has originated from matrix completion for both general entries [13] and binary
entries [22]. In particular, our convex approach can be viewed as a Lagrangian form of the proposal
in [22] when there is no covariate and the matrix is fully observed. We have nonetheless decided to
spell out details on both method and theory for the convex approach because the matrix completion
literature typically does not take into account the potential presence of observed covariates. On the
other hand, the idea of directly optimizing a non-convex objective function involving a low rank
matrix has been studied recently in a series of papers. See, for instance, [46, 11, 55, 60, 18, 66, 28]
and the references therein. Among these papers, the one that is the most related to the projected
gradient descent algorithm we are to propose and analyze is [18] which focused on estimating a
positive semi-definite matrix of exact low rank in a collection of interesting problems. Another
recent and related work [62] has appeared after the initial posting of the present manuscript.
However, we will obtain tighter error bounds for latent space models and we will go beyond the
exact low rank scenario.

From a link prediction viewpoint, it is natural to incorporate edge covariates. With appropriate
regularization to guard against overfitting, such extra information contained in edge covariates can
usually improve prediction performance. On the other hand, one may want to conduct community
detection after fitting latent space models. When this is the case, incorporation of edge covariates
becomes a more subtle issue. If one only uses edge covariates that are independent of the community
structure, then including them when fitting the model should help the estimation of latent variables
and hence community detection. However, when one incorporates edge covariates that are highly
dependent on community assignment, their inclusion may worsen the performance of community
detection by latent variables alone, and it is more reasonable to perform community detection using
both observed and latent variables. Since this is highly case dependent, we shall not attempt a
general treatment along this direction.

1.3 Organization

After a brief introduction of standard notation used throughout the paper, the rest of the paper is
organized as follows. Section 2 introduces both inner-product models and a broader class of latent
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space models on which our fitting methods work. The two fitting methods are described in detail
in Section 3, followed by their theoretical guarantees in Section 4 under both inner-product models
and the general class. The theoretical results are further corroborated by simulated examples in
Section 5. Section 6 demonstrates the competitive performance of the modeling approach and fitting
methods on five different real network datasets. We discuss interesting related problems in Section
7 and present proofs of the main results in Section 8. Technical details justifying the initialization
methods for the project gradient descent approach are deferred to the appendix. Furthermore, the
appendix also discusses some method for dealing with multiple edge covariates.

Notation For A “ pAijq P Rnˆn, TrpAq “
řn
i“1Aii stands for its trace. For X,Y P Rmˆn,

@

X,Y
D

“ TrpXJY q defines an inner product between them. If m ě n, for any matrix X with

singular value decomposition X “
řn
i“1 σiuiv

J
i , }X}˚ “

řn
i“1 σi, }X}F “

b

řn
i“1 σ

2
i and }X}op “

maxni“1 σi stand for the nuclear norm, the Frobenius norm and the operator norm of the matrix,
respectively. Moreover, Xi˚ and X˚j denote the i-th row and j-th column of X, and for any
function f , fpXq is the shorthand for applying fp¨q element-wisely to X, that is fpXq P Rmˆn and
rfpXqsij “ fpXijq. Let Sn` be the set of all nˆn positive semidefinite matrices and Opm,nq be the
set of all mˆ n orthonormal matrices. For any convex set C, PCp¨q is the projection onto the C.

2 Latent space models

In this section, we first give a detailed introduction of the inner-product model (1) and conditions
for its identifiability. In addition, we introduce a more general class of latent space models that
includes the inner-product model as a special case. The methods we propose later will be motivated
by the inner-product model and can also be applied to the more general class.

2.1 Inner-product models

Recall the inner-product model defined in (1), i.e., for any observed A and X and any i ă j,

Aij “ Aji
ind.
„ BernoullipPijq, with logitpPijq “ Θij “ αi ` αj ` βXij ` z

J
i zj .

Fixing all other parameters, if we increase αi, then node i has higher chances of connecting with
other nodes. Therefore, the αi’s model degree heterogeneity of nodes and we call them degree
heterogeneity parameters. Next, the regression coefficient β moderates the contribution of covariate
to edge formation. For instance, ifXij indicates whether nodes i and j share some common attribute
such as gender, then a positive β value implies that nodes that share common attribute are more
likely to connect. Such a phenomenon is called homophily in the social network literaute. Last but
not least, the latent variables tziu

n
i“1 enter the model through their inner-product zJi zj , and hence

is the name of the model. We impose no additional structural/distributional assumptions on the
latent variables for the sake of modeling flexibility.

We note that model (1) also allows the latent variables to enter the second equation in the form
of gpzi, zjq “ ´

1
2}zi ´ zj}

2. To see this, note that gpzi, zjq “ ´
1
2}zi}

2 ´ 1
2}zj}

2 ` zJi zj , and we may
re-parameterize by setting α̃i “ αi ´

1
2}zi}

2 for all i. Then we have

Θij “ αi ` αj ` βXij ´
1

2
}zi ´ zj}

2 “ α̃i ` α̃j ` βXij ` z
J
i zj .
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An important implication of this observation is that the function gpzi, zjq “ ´
1
2}zi ´ zj}

2 directly
models transitivity, i.e., nodes with common neighbors are more likely to connect since their latent
variables are more likely to be close to each other in the latent space. In view of the foregoing
discussion, the inner-product model (1) also enjoys this nice modeling capacity.

In matrix form, we have
Θ “ α1n

J ` 1nα
J ` βX `G (2)

where 1n is the all one vector in Rn and G “ ZZJ with Z “ pz1, ¨ ¨ ¨ , znq
J P Rnˆk. Since there is

no self-edge and Θ is symmetric, only the upper diagonal elements of Θ are well defined, which we
denote by Θu. Nonetheless we define the diagonal element of Θ as in (2) since it is inconsequential.
To ensure identifiability of model parameters in (1), we assume the latent variables are centered,
that is

JZ “ Z where J “ In ´
1

n
1n1n

J. (3)

Note that this condition uniquely identifies Z up to a common orthogonal transformation of its
rows while G “ ZZJ is now directly identifiable.

2.2 A more general class and the Schoenberg condition

Model (1) is a special case of a more general class of latent space models, which can be defined by

Aij “ Aji
ind.
„ BernoullipPijq, with

logitpPijq “ Θij “ α̃i ` α̃j ` βXij ` `pzi, zjq
(4)

where `p¨, ¨q is a smooth symmetric function on Rk ˆRk. We shall impose an additional constraint
on ` following the discussion below. In matrix form, for α̃ “ pα̃1, . . . , α̃nq

1 and L “ p`pzi, zjqq, we
can write

Θ “ α̃1n
J ` 1nα̃

J ` βX ` L.

To better connect with (2), let

G “ JLJ, and α1n
J ` 1nα

J “ α̃1n
J ` 1nα̃

J ` L´ JLJ. (5)

Note that the second equality in the last display holds since the expression on its righthand side is
symmetric and of rank at most two. Then we can rewrite the second last display as

Θ “ α1n
J ` 1nα

J ` βX `G (6)

which reduces to (2) and G satisfies JG “ G. Our additional constraint on ` is the following
Schoenberg condition:

For any positive integer n ě 2 and any z1, . . . , zn P Rk,
G “ JLJ is positive semi-definite for L “ p`pzi, zjqq and J “ In ´

1
n1n1n

J.
(7)

Condition (7) may seem abstract, while the following lemma elucidates two important classes of
symmetric functions for which it is satisfied.

Lemma 2.1. Condition (7) is satisfied in the following cases:
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1. ` is a positive semi-definite kernel function on Rk ˆ Rk;

2. `px, yq “ ´}x´y}qp for some p P p0, 2s and q P p0, ps where } ¨ }p is the p-norm (or p-seminorm
when p ă 1) on Rk.

The first claim of Lemma 2.1 is a direct consequence of the definition of positive semi-definite
kernel function which ensures that the matrix L itself is positive semi-definite and so is G “ JLJ
since J is also positive semi-definite. The second claim is a direct consequence of the Hilbert space
embedding result by Schoenberg [53, 54]. See, for instance, Theorems 1 and 2 of [53].

3 Two model fitting methods

This section presents two methods for fitting models (1) and (4)–(7). Both methods are motivated
by minimizing the negative log-likelihood function of the inner-product model, and can be regarded
as pseudo-likelihood approaches for more general models. From a methodological viewpoint, a key
advantage of these methods, in particular the projected gradient descent method, is the scalability
to networks of large sizes.

3.1 A convex approach via penalized MLE

In either the inner-product model or the general model we suppose the parameter matrix Θ in (2)
or (6) satisfies

´M1 ď Θij ď ´M2 for 1 ď i ‰ j ď n, and |Θii| ďM1 for 1 ď i ď n. (8)

where M1 ě M2 are non-negative. Then for any Θ satisfying (8), the corresponding edge
probabilities satisfy

1

2
e´M1 ď

1

1` eM1
ď Pij ď

1

1` eM2
ď e´M2 , 1 ď i ‰ j ď n. (9)

Thus M1 controls the conditioning of the problem and M2 controls the sparsity of the network.
Let σpxq “ 1{p1` e´xq be the sigmoid function, i.e. the inverse of logit function, then for any

i ‰ j, Pij “ σpΘijq and the log-likelihood function of the inner-product model (1) can be written
as

ÿ

iăj

!

Aij log
´

σpΘijq

¯

` p1´Aijq log
´

1´ σpΘijq

¯)

“
ÿ

iăj

!

AijΘij ` log
´

1´ σpΘijq

¯)

.

Recall that G “ ZZJ in inner-product models. The MLE of Θu is the solution to the following
rank constrained optimization problem:

min
Θu,α,β,G

´
ÿ

iăj

!

AijΘij ` log
´

1´ σpΘijq

¯)

,

subject to Θ “ α1n
J ` 1nα

J ` βX `G, ´M1 ď Θij ď ´M2,

GJ “ G, G P Sn`, rankpGq ď k.

(10)

This optimization problem is non-convex and generally intractable. To overcome this difficulty, we
consider a convex relaxation that replaces the rank constraint on G in (10) with a penalty term
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on its nuclear norm. Since G is positive semi-definite, its nuclear norm equals its trace. Thus, our
first model fitting scheme solves the following convex program:

min
α,β,G

´
ÿ

i,j

!

AijΘij ` log
´

1´ σpΘijq

¯)

` λn TrpGq

subject to Θ “ α1n
J ` 1nα

J ` βX `G,GJ “ G, G P Sn`, ´M1 ď Θij ď ´M2.

(11)

The convex model fitting method (11) is motivated by the nuclear norm penalization idea
originated from the matrix completion literature. See, for instance, [13], [12], [40], [22] and the
references therein. In particular, it can be viewed as a Lagrangian form of the proposal in [22]
when there is no covariate and the matrix is fully observed. However, we have decided to make
this proposal and study the theoretical properties as the existing literature, such as [22], does not
take in consideration the potential presence of observed covariates. Furthermore, one can still solve
(11) when the true underlying model is one of the general models introduced in Section 2.2. The
appropriate choice of λn will be discussed in Section 4.

Remark 3.1. In addition to the introduction of the trace penalty, the first term in the objective
function in (11) now sums over all pi, jq pairs. Due to symmetry, after scaling, the difference from
the sum in (10) lies in the inclusion of all diagonal terms in Θ. This slight modification leads
to neither theoretical consequence nor noticeable difference in practice. However, it allows easier
implementation and simplifies the theoretical investigation. We would note that the constraint
´M1 ď Θij ď ´M2 is included partially for obtaining theoretical guarantees. In simulated examples
reported in Section 5, we found that the convex program worked equally well without this constraint.

3.2 A non-convex approach via projected gradient descent

Although the foregoing convex relaxation method is conceptually neat, state-of-the-art algorithms
to solve the nuclear (trace) norm minimization problem (11), such as iterative singular value
thresholding, usually require computing a full singular value decomposition at every iteration,
which can still be time consuming when fitting very large networks.

To further improve scalability of model fitting, we propose an efficient first order algorithm that
directly tackles the following non-convex objective function:

min
Z,α,β

gpZ,α, βq “ ´
ÿ

i,j

!

AijΘij ` log
´

1´ σpΘijq

¯)

where Θ “ α1n
J`1nα

J`βX`ZZJ. (12)

The detailed description of the method is presented in Algorithm 1.
After initialization, Algorithm 1 iteratively updates the estimates for the three parameters,

namely Z, α and β. In each iteration, for each parameter, the algorithm first descends along the
gradient direction by a pre-specified step size. The descent step is then followed by an additional
projection step which projects the updated estimates to pre-specified constraint sets. We propose
to set the step sizes as

ηZ “ η{
›

›Z0
›

›

2

op
, ηα “ η{p2nq, and ηβ “ η{p2 }X}2Fq (13)

for some small numeric constant η ą 0. To establish the desired theoretical guarantees, we make
a specific choice of the constraint sets later in the statement of Theorem 4.2 and Theorem 4.4. In
practice, one may simply set

Zt`1 “ J rZt`1, αt`1 “ rαt`1, and βt`1 “ rβt`1. (14)
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Algorithm 1 A projected gradient descent model fitting method.

1: Input: Adjacency matrix: A; covariate matrix: X; latent space dimension: k ě 1; initial
estimates: Z0, α0, β0; step sizes: ηZ , ηα, ηβ; constraint sets: CZ , Cα, Cβ.

Output: pZ “ ZT , pα “ αT , pβ “ βT .
2: for t “ 0, 1, ¨ ¨ ¨ , T ´ 1 do
3: rZt`1 “ Zt ´ ηZ∇ZgpZ,α, βq “ Zt ` 2ηZ

`

A´ σpΘtq
˘

Zt;
4: rαt`1 “ αt ´ ηα∇αgpZ,α, βq “ αt ` 2ηαpA´ σpΘ

tqq1n;
5: rβt`1 “ βt ´ ηβ∇βgpZ,α, βq “ βt ` ηβ

@

A´ σpΘtq, X
D

;

6: Zt`1 “ PCZ p rZt`1q, αt`1 “ PCαprαt`1q, βt`1 “ PCβ prβt`1q;
7: end for

Here and after, when there is no covariate, i.e. X “ 0, we skip the update of β in each iteration.
For each iteration, the update on the latent part is performed in the space of Z (that is Rnˆk)

rather than the space of all nˆ n Gram matrices as was required in the convex approach. In this
way, it reduces the computational cost per iteration from Opn3q to Opn2kq. Since we are most
interested in cases where k ! n, such a reduction leads to improved scalability of the non-convex
approach to large networks. To implement this non-convex algorithm, we need to specify the latent
space dimension k, which was not needed for the convex program (11). We defer the discussion on
the data-driven choice of k to Section 7.

We note that Algorithm 1 is not guaranteed to find any global minimizer, or even any local
minimizer, of the objective function (12). However, as we shall show later in Section 4, under
appropriate conditions, the iterates generated by the algorithm will quickly enter a neighborhood of
the true parameters (Z‹, α‹, β‹) and any element in this neighborhood is statistically at least as good
as the estimator obtained from the convex method (11). This approach has close connection to the
investigation of various non-convex methods for other statistical and signal processing applications.
See for instance [15], [18] and the references therein. Our theoretical analysis of the algorithm is
going to provide some additional insight as we shall establish its high probability error bounds for
both the exact and the approximate low rank scenarios. In the rest of this section, we discuss
initialization of Algorithm 1.

3.2.1 Initialization

Appropriate initialization is the key to success for Algorithm 1. We now present two ways to
initialize it which are theoretically justifiable under different circumstances.

Initialization by projected gradient descent in the lifted space The first initialization
method is summarized in Algorithm 2, which is essentially running the projected gradient descent
algorithm on the following regularized objective function for a small number of steps:

fpG,α, βq “ ´
ÿ

i,j

tAijΘij ` logp1´ σpΘijqqu ` λn TrpGq `
γn
2

`

}G}2F ` 2
›

›α1n
J
›

›

2

F
` }Xβ}2F

˘

. (15)

Except for the third term, this is the same as the objective function in (11). However, the
inclusion of the additional proximal term ensures that one obtains the desired initializers after a
minimal number of steps.
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Algorithm 2 Initialization of Algorithm 1 by Projected Gradient Descent

1: Input: Adjacency matrix: A; covariate matrix X; initial values: G0 “ 0, α0 “ 0, β0 “ 0;
step size: η; constraint set: CG, Cα, Cβ; regularization parameter: λn, γn; latent dimension: k;
number of steps: T .

2: for t “ 1, 2, ¨ ¨ ¨ , T do
3: rGt`1 “ Gt ´ η∇GfpG,α, βq “ Gt ` ηpA´ σpΘtq ´ λnIn ´ γnG

tq;
4: rαt`1 “ αt ´ η∇αfpG,α, βq{n “ αt ` ηppA´ σpΘtqq1n{2n´ γnα

tq;
5: rβt`1 “ βt ´ η∇βfpG,α, βq{}X}

2
F “ βt ` ηp

@

A´ σpΘtq, X
D

{}X}2F ´ γnβ
tq;

6: Gt`1 “ PCGp rGt`1q, αt`1 “ PCαprαt`1q, βt`1 “ PCβ prβt`1q;
7: end for
8: Set ZT “ UkD

1{2
k where UkDkU

J
k is the top-k eigen components of GT ;

9: Output: ZT , αT , βT .

The appropriate choices of λn and γn will be spelled out in Theorem 4.5 and Corollary 4.1.
The step size η in Algorithm 2 can be set at a small positive numeric constant, e.g. η “ 0.2. The
projection sets that lead to theoretical justification will be specified later in Theorem 4.5 while in
practice, one may simply set Gt`1 “ J rGt`1, αt`1 “ rαt`1, and βt`1 “ rβt`1.

Initialization by universal singular value thresholding Another way to construct the
initialization is to first estimate the probability matrix P by universal singular value thresholding
(USVT) proposed by [16] and then compute the initial estimates of α,Z, β heuristically by inverting
the logit transform. The procedure is summarized as Algorithm 3.

Algorithm 3 Initialization of Algorithm 1 by Singular Value Thresholding

1: Input: Adjacency matrix: A; covariate matrix X; latent dimension k; threshold τ .
2: Let rP “

ř

σiěτ
σiuiv

J
i where

řn
i“1 σiuiv

J
i is the SVD of A. Elementwisely project rP to the

interval r12e
´M1 , 1

2 s to obtain pP . Let pΘ “ logitpp pP ` pPJq{2q;

3: Let α0, β0 “ arg minα,β }pΘ´
`

α1n
J ` 1nα

J ` βX
˘

}2F;

4: Let pG “ PSn`pRq where R “ JppΘ´ pα01n
J ` 1npα

0qJ ` β0XqqJ ;

5: Set Z0 “ UkD
1{2
k where UkDkU

J
k is the top-k singular value components of pG;

6: Output: α0, Z0, β0.

Intuitively speaking, the estimate of P by USVT is consistent when }P }˚ is “small”. Following
the arguments in Theorems 2.6 and 2.7 of [16], such a condition is satisfied when the covariate
matrix X “ 0 or when X has “simple” structure. Such “simple” structure could be Xij “ κpxi, xjq
where x1, ¨ ¨ ¨ , xn P Rd are feature vectors associated with the n nodes and κp¨, ¨q characterizes
the distance/similarity between node i and node j. For instance, one could have Xij “ 1txi“xju
where x1, ¨ ¨ ¨ , xn P t1, ¨ ¨ ¨ ,Ku is a categorical variable such as gender, race, nationality, etc; or
Xij “ sp|xi ´ xj |q where sp¨q is a continuous monotone link function and x1, ¨ ¨ ¨ , xn P R is a
continuous node covariate such as age, income, years of education, etc.

Remark 3.2. The computational cost of Algorithm 3 is dominated by matrix decompositions in
step 1 (line 2) and step 3 (line 4). In the sparse case, the computation cost for the SVD part can
be further reduced to be proportional to the number of edges in the sparse case.
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4 Theoretical results

In this section, we first present error bounds for both fitting methods under inner-product models,
followed by their generalizations to the more general models satisfying the Schoenberg condition
(7). In addition, we give theoretical justifications of the two initialization methods for Algorithm
1.

4.1 Error bounds for inner-product models

We shall establish uniform high probability error bounds for inner-product models belonging to the
following parameter space:

Fpn, k,M1,M2, Xq “
!

Θ|Θ “ α1n
J ` 1nα

J ` βX ` ZZJ, JZ “ Z,

max
1ďiďn

}Zi˚}
2, }α}8, |β| max

1ďiăjďn
|Xij | ď

M1

3
, max

1ďi‰jďn
Θij ď ´M2

)

.
(16)

When X “ 0, we replace the first inequality in (16) with max1ďiďn }Zi˚}
2, }α}8 ďM1{2. For the

results below, k, M1, M2 and X are all allowed to change with n.

Results for the convex approach We first present theoretical guarantees for the optimizer of
(11). When X in nonzero, we make the following assumption for the identifiability of β.

Assumption 4.1. The stable rank of the covariate matrix X satisfies rstablepXq “ }X}
2
F { }X}

2
op ě

M0k for some large enough constant M0.

The linear dependence on k of rstablepXq is in some sense necessary for β to be identifiable as
otherwise the effect of the covariates could be absorbed into the latent component ZZJ.

Let ppα, pβ, pGq be the solution to (11) and pα‹, β‹, G‹q be the true parameter that governs the
data generating process. Let pΘ and Θ‹ be defined as in (2) but with the estimates and the
true parameter values for the components respectively. Define the error terms ∆

pΘ
“ pΘ ´ Θ‹,

∆
pα “ pα ´ α‹, ∆

pβ
“ β̂ ´ β‹ and ∆

pG
“ pG ´ G‹. The following theorem gives both deterministic

and high probability error bounds for estimating both the latent vectors and logit-transformed
probability matrix.

Theorem 4.1. Under Assumption 4.1, for any λn satisfying λn ě maxt2 }A´ P }op , |xA ´

P,X{ }X}Fy|{
?
k, 1u, there exists a constant C such that

›

›∆
pG

›

›

2

F
,
›

›∆
pΘ

›

›

2

F
ď Ce2M1λ2

nk.

Specifically, setting λn “ C0

a

max tne´M2 , log nu for a large enough positive constant C0, there
exist positive constants c, C such that uniformly over Fpn, k,M1,M2, Xq, with probability at least
1´ n´c,

›

›∆
pG

›

›

2

F
,
›

›∆
pΘ

›

›

2

F
ď Cψ2

n

where

ψ2
n “ e2M1nk ˆmax

 

e´M2 ,
log n

n

(

. (17)

11



If we turn the error metrics in Theorem 4.1 to mean squared errors, namely }∆
pG
}2F{n

2 and
}∆

pΘ
}2F{n

2, we obtain the familiar k{n rate in low rank matrix estimation problems and the theorem
can viewed as a complementary result to the result in [22] in the case where there are observed
covariate and the 1´bit matrix is fully observed. When e´M2 ě

logn
n , the sparsity of the network

affects the rate through the multiplier e´M2 . As the network gets sparser, the multiplier will be no
smaller than logn

n .

Remark 4.1. Note that the choice of the penalty parameter λn depends on e´M2 where the maximum
node degree of the network is of order Opne´M2q. In practice, we may not know this quantity and

we propose to estimate M2 with xM2 “ ´logitp
ř

ij Aij{n
2q.

Results for the non-convex approach A key step toward establishing the statistical properties
of the outputs of Algorithm 1 is to characterize the evolution of its iterates. To start with, we
introduce an error metric that is equivalent to }∆Θt}

2
F “ }Θ

t´Θ‹}
2
F while at the same time is more

convenient for establishing an inequality satisfied by all iterates. Note that the latent vectors are
only identifiable up to an orthogonal transformation of Rk, for any Z1, Z2 P Rnˆk, we define the
distance measure

distpZ1, Z2q “ min
RPOpkq

}Z1 ´ Z2R}F

where Opkq collects all kˆ k orthogonal matrices. Let Rt “ arg minRPOpkq
›

›Zt ´ Z‹R
›

›

F
and ∆Zt “

Zt ´ Z‹R
t, and further let ∆αt “ αt ´ α‹,∆Gt “ ZtpZtqJ ´ Z‹Z

J
‹ and ∆βt “ βt ´ β‹. Then the

error metric we use for characterizing the evolution of iterates is

et “ }Z‹}
2
op }∆Zt}

2
F ` 2

›

›∆αt1n
J
›

›

2

F
`
›

›∆βtX
›

›

2

F
. (18)

Let κZ‹ be the condition number of Z‹ (i.e., the ratio of the largest to the smallest singular
values). The following lemma shows that the two error metrics et and }∆Θt}

2
F are equivalent up to

a multiplicative factor of order κ2
Z‹

.

Lemma 4.1. Under Assumption 4.1, there exists a constant 0 ď c0 ă 1 such that

et ď
κ2
Z‹

2p
?

2´ 1q
}∆Gt}

2
F ` 2

›

›∆αt1n
J
›

›

2

F
`
›

›∆βtX
›

›

2

F
ď

κ2
Z‹

2p
?

2´ 1qp1´ c0q
}∆Θt}

2
F .

Moreover, if distpZt, Z‹q ď c }Z‹}op,

et ě
1

pc` 2q2
}∆Gt}

2
F ` 2

›

›∆αt1n
J
›

›

2

F
`
›

›∆βtX
›

›

2

F
ě

1

pc` 2q2p1` c0q
}∆Θt}

2
F .

In addition, our error bounds depend on the following assumption on the initializers.

Assumption 4.2. The initializers Z0, α0, β0 in Algorithm 1 satisfy e0 ď ce´2M1 }Z‹}
4
op {κ

4
Z‹

for a
sufficiently small positive constant c.

Note that the foregoing assumption is not very restrictive. If k ! n, M1 is a constant and the
entries of Z‹ are i.i.d. random variables with mean zero and bounded variance, then }Z‹}op —

?
n

and κZ‹ — 1. In view of Lemma 4.1, this only requires 1
n2 }Θ

0´Θ‹}
2
F to be upper bounded by some

12



constant. We defer verification of this assumption for initial estimates constructed by Algorithm 2
and Algorithm 3 to Section 4.3.

The following theorem states that under such an initialization, errors of the iterates converge
linearly till they reach the same statistical precision ψ2

n as in Theorem 4.1 modulo a multiplicative
factor that depends only on the condition number of Z‹.

Theorem 4.2. Let Assumptions 4.1 and 4.2 be satisfied. Set the constraint sets as1

CZ “ tZ P Rnˆk, JZ “ Z, max
1ďiďn

}Zi˚} ďM1{3u,

Cα “ tα P Rn, }α}8 ďM1{3u, Cβ “ tβ P R, β}X}8 ďM1{3u.

Set the step sizes as in (13) for any η ď c where c ą 0 is a universal constant. Let ζn “
maxt2 }A´ P }op , |xA´ P,X{ }X}Fy|{

?
k, 1u. Then we have

1. Deterministic errors of iterates: If }Z‹}
2
op ě C1κ

2
Z‹
eM1ζ2

nˆmax
!

a

ηkeM1 , 1
)

for a sufficiently

large constant C1, there exist positive constants ρ and C such that

et ď 2

ˆ

1´
η

eM1κ2
Z‹

ρ

˙t

e0 `
Cκ2

Z‹

ρ
e2M1ζ2

nk.

2. Probabilistic errors of iterates: If }Z‹}
2
op ě C1κ

2
Z‹

?
neM1´M2{2 max

!

a

ηkeM1 , 1
)

for a

sufficiently large constant C1, there exist positive constants ρ, c0 and C such that uniformly
over Fpn, k,M1,M2, Xq with probability at least 1´ n´c0,

et ď 2

ˆ

1´
η

eM1κ2
Z‹

ρ

˙t

e0 ` C
κ2
Z‹

ρ
ψ2
n.

For any T ą T0 “ logp
M2

1

κ2Z‹e
4M1´M2

n
k2
q{ logp1´ η

eM1κ2Z‹
ρq,

}∆GT }
2
F, }∆ΘT }

2
F ď C 1κ2

Z‹ψ
2
n.

for some constant C 1 ą 0.

Remark 4.2. In view of Lemma 4.1, the rate obtained by the non-convex approach in terms of
›

›∆
pΘ

›

›

2

F
matches the upper bound achieved by the convex method, up to a multiplier of squared

condition number κ2
Z‹

. As suggested by Lemma 4.1, the extra factor comes partly from the fact

that et is a slightly stronger loss function than }∆Θt}
2
F and in the worst case can be cκ2

Z‹
times

larger than }∆Θt}
2
F.

Remark 4.3. Under the setting of Theorem 4.2, the projection steps for α, β in Algorithm 1 are
straightforward and have the following closed form expressions: αt`1

i “ rαt`1
i mint1,M1{p3|rα

t`1
i |qu,

1When X “ 0, Cβ “ H and we replace M1{3 in CZ and Cα with M1{2 in correspondence with the discussion
following (16).
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βt`1 “ rβt`1 mint1,M1{p3|rβ
t`1|maxi,j |Xij |qu. The projection step for Z is slightly more involved.

Notice that CZ “ C1
Z

Ş

C2
Z where

C1
Z “ tZ P Rnˆk, JZ “ Zu, C2

Z “ tZ P Rnˆk, max
1ďiďn

}Zi˚}
2 ďM1{3u.

Projecting to either of them has closed form solution, that is PC1Z pZq “ JZ, rPC2Z pZqsi˚ “
Zi˚mint1,

a

M1{p3}Zi˚}2qu. Then Dykstra’s projection algorithm [23] (or alternating projection

algorithm) can be applied to obtain PCZ p rZt`1q. We note that projections induced by the
boundedness constraints for Z,α, β are needed for establishing the error bounds theoretically.
However, when implementing the algorithm, users are at liberty to drop these projections and
to only center the columns of the Z iterates as in (14). We did not see any noticeable difference
thus caused on simulated examples reported in Section 5.

Remark 4.4. When both M1 and M2 are constants and the covariate matrix X is absent, the result
in Section 4.5 of [18], in particular Corollary 5, implies the error rate of Opnkq in Theorem 4.2.
However, when M1 Ñ 8 and M2 remains bounded as n Ñ 8, the error rate in [18] becomes2

Ope8M1M2
1nkq, which can be much larger than the rate Ope2M1nkq in Theorem 4.2 even when X

is absent. We feel that this is a byproduct of the pursuit of generality in [18] and so the analysis
has not been fine-tuned for latent space models. In addition, Algorithm 1 enjoys nice theoretical
guarantees on its performance even when the model is mis-specified and the Θ matrix is only
approximately low rank. See Theorem 4.4 below. This case which is important from a modeling
viewpoint was not considered in [18] as its focus was on generic non-convex estimation of low rank
positive semi-definite matrices rather than fittings latent space models.

4.2 Error bounds for more general models

We now investigate the performances of the fitting approaches on more general models satisfying
the Schoenberg condition (7). To this end, we consider the following parameter space for the more
general class of latent space models

Fgpn,M1,M2, Xq “
!

Θ|Θ “ α1n
J ` 1nα

J ` βX `G,G P Sn`, JG “ G,

max
1ďiďn

Gii, }α}8, |β| max
1ďiăjďn

|Xij | ďM1{3, max
1ďi‰jďn

Θij ď ´M2

)

.
(19)

As before, when X “ 0, we replace the first inequality in (19) with max1ďiďn }Zi˚}
2, }α}8 ďM1{2.

For the results below, M1, M2 and X are all allowed to change with n. Note that the latent space
dimension k is no longer a parameter in (19). Then for any positive integer k, let UkDkU

J
k be the

best rank-k approximation to G‹. In this case, with slight abuse of notation, we let

Z‹ “ UkD
1{2
k and sGk “ G‹ ´ UkDkU

J
k . (20)

Note that (19) does not specify the spectral behavior of G which will affect the performance of
the fitting methods as the theorems in this section will later reveal. We choose not to make such
specification due to two reasons. First, the spectral behavior of distance matrices resulting from

2One can verify that in this case we can identify the quantities in Corollary 5 of [18] as σ “ 1, p “ 1, d “ n, r “ k,
ν —M1, L4ν — 1 and `4ν — e4M1 .
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different kernel functions and manifolds is by itself a very rich research topic. See, for instance,
[48, 8, 24, 20] and the references therein. In addition, the high probability error bounds we are to
develop in this section is going to work uniformly for all models in (19) and can be specialized to
any specific spectral decay pattern of G of interest.

Results for the convex approach The following theorem is a generalization of Theorem 4.1
to the general class (19).

Theorem 4.3. For any k P N` such that Assumption 4.1 holds and any λn satisfying λn ě
maxt2 }A´ P }op , |xA´ P,X{ }X}Fy|{

?
k, 1u, there exists a constant C such that the solution to

the convex program (11) satisfies

›

›∆
pΘ

›

›

2

F
ď C

`

e2M1λ2
nk ` e

M1λn} sGk}˚
˘

.

Specifically, setting λn “ C0

a

max tne´M2 , log nu for a large enough constant C0, there exists
positive constants c, C such that uniformly over Fgpn,M1,M2, Xq with probability at least 1´ n´c,

›

›∆
pΘ

›

›

2

F
ď Cpψ2

n ` e
M1´M2{2

?
n} sGk}˚q. (21)

The upper bound in (21) has two terms. The first is the same as that for the inner-product
model. The second can be understood as the effect of model mis-specification, since the estimator
is essentially based on the log-likelihood of the inner-product model. We note that the bound holds
for any k such that Assumption 4.1 holds while the choice of the tuning parameter λn does not
depend on k. Therefore, we can take the infimum over all admissible values of k, depending on the
stable rank of X. When X “ 0, we can further improve the bound on the right side of (21) to be
the infimum of the current expression over all 0 ď k ď n.

Results for the non-convex approach Under the definition in (20), we continue to use the
error metric et defined in equation (18). The following theorem is a generalization of Theorem 4.2
to the general class (19).

Theorem 4.4. Under Assumptions 4.1 and 4.2, set the constraint sets CZ , Cα, Cβ and the step
sizes ηZ , ηα and ηβ as in Theorem 4.2. Let ζn “ maxt2 }A´ P }op , |xA ´ P,X{ }X}Fy|{

?
k, 1u.

Then we have

1. Deterministic errors of iterates: If }G‹}op ě C1κ
2
Z‹
eM1ζ2

n ˆmax
!

a

ηkeM1 ,
b

η} sGk}
2
F{ζ

2
n, 1

)

,

there exist positive constants ρ and C such that

et ď 2

ˆ

1´
η

eM1κ2
Z‹

ρ

˙t

e0 `
Cκ2

Z‹

ρ

´

e2M1ζ2
nk ` e

M1
›

› sGk
›

›

2

F

¯

.

2. Probabilistic errors of iterates: If }G‹}op ě C1κ
2
Z‹

?
neM1´M2{2 max

!

a

ηkeM1 ,
b

η} sGk}
2
F{ζ

2
n, 1

)

for a sufficiently large constant C1, there exist positive constants ρ, c0 and C such that
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uniformly over Fgpn,M1,M2, Xq with probability at least 1 ´ n´c0, the iterates generated by
Algorithm 1 satisfying

et ď 2

ˆ

1´
η

eM1κ2
Z‹

ρ

˙t

e0 `
Cκ2

Z‹

ρ

´

ψ2
n ` e

M1
›

› sGk
›

›

2

F

¯

.

For any T ą T0 “ logp
M2

1

κ2Z‹e
4M1´M2

n
k2
q{ logp1´ η

eM1κ2Z‹
ρq,

}∆GT }
2
F, }∆ΘT }

2
F ď C 1κ2

Z‹

´

ψ2
n ` e

M1
›

› sGk
›

›

2

F

¯

for some constant C 1.

Compared with Theorem 4.2, the upper bound here has an additional term eM1}Ḡk}
2
F that can

be understood as the effect of model mis-specification. Such a term can result from mis-specifying
the latent space dimension in Algorithm 1 when the inner-product model holds, or it can arise when
the inner-product model is not the true underlying data generating process. This term is different
from its counterpart in Theorem 4.3 which depends on Ḡk through its nuclear norm. In either
case, the foregoing theorem guarantees that Algorithm 1 continues to yield reasonable estimate of
Θ and G as long as }Ḡk}

2
F “ OpeM1´M2nkq, i.e., when the true underlying model can be reasonably

approximated by an inner-product model with latent space dimension k.

4.3 Error bounds for initialization

We conclude this section with error bounds for the two initialization methods in Section 3. These
bounds justify that the methods yield initial estimates satisfying Assumption 4.2 under different
circumstances.

Error bounds for Algorithm 2 The following theorem indicates that Algorithm 2 yields good
initial estimates after a small number of iterates as long as the latent effect G‹ is substantial and
the remainder Ḡk is well controlled.

Theorem 4.5. Suppose that Assumption 4.1 holds and that }α‹1n
J}F, }β‹X}F ď C}G‹}F for a

numeric constant C ą 0. Let λn satisfy C0

a

max tne´M2 , log nu ď λn ď c0 }G‹}op {pe
2M1

?
kκ3

Z‹
q

for sufficiently large constant C0 and sufficiently small constant c0, let γn satisfy γn ď δλn{ }G‹}op

for sufficiently small constant δ. Choose step size η ď 2{9 and set the constraint sets as 3

CG “ tG P Snˆn` , JG “ G, max
1ďi,jďn

|Gij | ďM1{3u,

Cα “ tα P Rn, }α}8 ďM1{3u, Cβ “ tβ P R, β}X}8 ďM1{3u.

If the latent vectors contain strong enough signal in the sense that

}G‹}
2
op ě Cκ6

Z‹e
2M1 max

!

φ2
n, }

sGk}
2
˚{k,

›

› sGk
›

›

2

F

)

, (22)

3When X “ 0, Cβ “ H and we replace M1{3 in CG and Cα with M1{2 in correspondence with the discussion
following (16) and (19).
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for some sufficiently large constant C, there exist positive constants c, C1 such that with probability
at least 1´ n´c, for any given constant c1 ą 0, eT ď c2

1e
´2M1 }Z‹}

4
op {κ

4
Z‹

as long as T ě T0, where

T0 “ log

˜

C1e
2M1kκ6

Z‹

c2
1

¸

ˆ

log

ˆ

1

1´ γnη

˙˙´1

. (23)

We note that the theorem holds for both inner-product models and more general models
satisfying condition (7). In addition, it gives the ranges of λn and γn for implementing Algorithm 2.
Note that the choices λn and γn affect the number of iterations needed. To go one step further, the
following corollary characterizes the ideal choices of γn and λn in Algorithm 2. It is worth noting
that the choice of λn here does not coincide with that in Theorem 4.1 and Theorem 4.3. So this is
slightly different from the conventional wisdom that to initialize the non-convex approach, it would
suffice to simply run the convex optimization algorithm for a small number of steps. Interestingly,
the corollary shows that when M1, k and κZ‹ are all upper bounded by universal constants, for
appropriate choices of γn and λn in Algorithm 2, the number of iterations needed does not depend
on the graph size n.

Corollary 4.1. Specifically in Theorem 4.5, if we choose γn “ c0{pe
2M1

?
kκ3

Z‹
q for some sufficiently

small constant c0, and λn “ C0γn }G‹}op for some sufficiently large constant C0, there exist positive
constants c, C1 such that with probability at least 1 ´ n´c, for any given constant c1 ą 0, eT ď
c2

1e
´2M1 }Z‹}

4
op {κ

4
Z‹

as long as T ě T0, where

T0 “ log

˜

C1e
2M1kκ6

Z‹

c2
1

¸

ˆ

log

ˆ

1

1´ γnη

˙˙´1

. (24)

Remark 4.5. Similar to computing PCZ p¨q in Algorithm 1, PCGp¨q could also be implemented by
Dykstra’s projection algorithm since CG is the intersection of two convex sets. The boundedness
constraint maxi,j |Gij | ď M{3 is only for the purpose of proof. In practice, if ignoring this

constraint, Gt`1 will have closed form solution Gt`1 “ PSn`pJ
rGt`1Jq where PSn`p¨q can be computed

by singular value thresholding.

Error bounds for Algorithm 3 The following result justifies the singular value thresholding
approach to initialization for inner-product models with no edge covariate.

Proposition 4.1. If no covariates are included in the latent space model and }G‹}F ě c0n for some
numeric constant c0 ą 0, then there exists constant c1 such that with probability at least 1´nc1, for
any n ě Cpk,M1, κZ‹q where Cpk,M1, κZ‹q is a constant depending on k,M1 and κZ‹, the outputs
of Algorithm 3 with τ ě 1.1

?
n satisfies the initialization condition in Assumption 4.2.

Although we do not have further theoretical results, Algorithm 3 worked well on all the simulated
data examples reported in Section 5.

5 Simulation studies

In this section, we present results of simulation studies on three different aspects of the proposed
methods: (1) scaling of estimation errors with network sizes, (2) impact of initialization on
Algorithm 1, and (3) performance of the methods on general models.
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Estimation errors We first investigate how estimation errors scale with network size. To this
end, we fix β‹ “ ´

?
2 and for any pn, kq P t500, 1000, 2000, 4000, 8000u ˆ t2, 4, 8u, we set the other

model parameters randomly following these steps:

1. Generate the degree heterogeneity parameters: pα‹qi “ ´αi{
řn
j“1 αj for 1 ď i ď n, where

α1, ¨ ¨ ¨ , αn
iid
„ U r1, 3s.

2. Generate µ1, µ2 P Rk with coordinates iid following U r´1, 1s as two latent vector centers;

3. Generate latent vectors: for i “ 1, . . . , k, let pz1qi, ¨ ¨ ¨ , pztn{2uqi
iid
„ pµ1qi ` Nr´2,2sp0, 1q

and pztn{2u`1qi, ¨ ¨ ¨ , pznqi
iid
„ pµ2qi ` Nr´2,2sp0, 1q where Nr´2,2sp0, 1q is the standard normal

distribution restricted onto the interval r´2, 2s, then set Z‹ “ JZ where Z “ rz1, ¨ ¨ ¨ , zns
J

and J is as defined in (3). Finally, we normalize Z‹ such that }G‹}F “ n;

4. Generate the covariate matrix: X “ n rX{} rX}F where rXij
iid
„ min t|Np1, 1q|, 2u.

For each generated model, we further generated 30 independent copies of the adjacency matrix for
each model configuration. Unless otherwise specified, for all experiments in this section, with given
pn, kq, the model parameters are set randomly following the above four steps and algorithms are
run on 30 independent copies of the adjacency matrix.

The results of the estimation error for varying pn, kq are summarized in the log-log boxplots in
Figure 1, where “Relative Error - Z” is defined as } pZ pZJ´Z‹Z

J
‹ }

2
F{}Z‹Z

J
‹ }

2
F and “Relative Error -

Θ” is defined as }pΘ´Θ‹}
2
F{}Θ‹}

2
F. From the boxplots, for each fixed latent space dimension k, the

relative estimation errors for both Z‹ and Θ‹ scale at the order of 1{
?
n. This agrees well with the

theoretical results in Section 3. For different latent space dimension k, the error curve (in log-log
scale) with respect to network size n only differs in the intercept.
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Figure 1: log-log boxplot for relative estimation errors with varying network size and latent space
dimension.
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Impact of initialization on Algorithm 1 We now turn to the comparison of three different
initialization methods for Algorithm 1: the convex method (Algorithm 2), singular value
thresholding (Algorithm 3), and random initialization. To this end, we fixed n “ 4000, k “ 4.
In Algorithm 2, we choose T “ 10 and λn “ 2

a

npp where pp “
ř

ij Aij{n
2. In Algorithm 3, we

set M1 “ 4 and threshold τ “
a

npp. The relative estimation errors are summarized as boxplots
in Figure 2. Clearly, the non-convex algorithm is very robust to the initial estimates. Similar
phenomenon is observed in real data analysis where different initializations yield nearly the same
clustering accuracy.
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Figure 2: Boxplot for relative estimation error with different initialization methods.

Performance on general models To investigate the performance of the proposed method under
the general model (4), we try two frequently used kernel functions, distance kernel `dpzi, zjq “
´}zi´ zj} and Gaussian kernel `gpzi, zjq “ 4 expp´}zi´ zj}

2{9q. In this part, we use d to represent
the dimension of the latent vectors (that is, z1, ¨ ¨ ¨ , zn P Rd) and k to represent the fitting dimension
in Algorithm 1. We fix d “ 4 and network size n “ 4000. Model parameters are set randomly in
the same manner as the four step procedure except that the third step is changed to:

Generate latent vectors: for i “ 1, . . . , d, let pz1qi, ¨ ¨ ¨ , pztn{2uqi
iid
„ pµ1qi ` Nr´2,2sp0, 1q

and pztn{2u`1qi, ¨ ¨ ¨ , pznqi
iid
„ pµ2qi ` Nr´2,2sp0, 1q where Nr´2,2sp0, 1q is the standard

normal distribution restricted onto the interval r´2, 2s. Finally for given kernel function
`p¨, ¨q, set G‹ “ JLJ where Lij “ `pzi, zjq.

We run both the convex approach and Algorithm 1 with different fitting dimensions. The boxplot
for the relative estimation errors and the singular value decay of the kernel matrix under distance
kernel and Gaussian kernel are summarized in Figure 3 and Figure 4 respectively.

As we can see, under the generalized model, the non-convex algorithm exhibits bias-variance
tradeoff with respect to the fitting dimension, which depends on the singular value decay of the
kernel matrix. The advantage of the convex method is the adaptivity to the unknown kernel
function.
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Figure 3: The log-log plot of relative estimation errors of both convex and non-convex approach
under the distance kernel `dpzi, zjq “ ´}zi´zj} (left panel). The log-log plot of ordered eigenvalues
of G‹ (right panel).

●

●

●

0.030

0.035

0.040

0.045

k = 3 k = 6 k = 9 convex

R
el

at
iv

e 
E

rr
or

 −
 Θ

●

● ● ●

●

● ● ● ●

● ● ●
● ●

●

● ●
●

●●
●●●

●

●
●

●●●●
●

●
●●

●

●
●

●●●●
●●●

●●●
●●●

●

●●●●●●
●
●●
●
●●●●●

●●
●●●

●●●
●●●●●●●●●

●●●
●●●●●

●●●●●●●●
●●●
●●
●
●●●●●●●●●●●●●

●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1

100

1 10 100

S
in

gu
la

r 
V

al
ue

s

Figure 4: log-log plot for the relative estimation errors of both convex and non-convex approach
under the Gaussian kernel `gpzi, zjq “ 4 expp´}zi´ zj}

2{9q (left panel). The log-log plot of ordered
eigenvalues of G‹ (right panel).

When the true underlying model is not the inner-product model, Theorem 4.4 indicates that the
optimal choice of fitting dimension k should depend on the size of the network. To illustrate such
dependency, we vary both network size and fitting dimension, of which the results are summarized
in Figure 5. As the size of the network increases, the optimal choice of fitting dimension increases
as well.

Computational cost and scalability Finally, to test the scalability of both non-convex and
convex algorithms, we also record the runtimes of the simulation for different sizes of the network
and different dimensions of the latent vectors. The left and right panels of Figure 6 summarize the
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Figure 5: log-log plot for the relative estimation error with varying network size under distance
kernel `dpzi, zjq “ ´}zi ´ zj} (left panel) and under the Gaussian kernel `gpzi, zjq “ 4 expp´}zi ´
zj}

2{9q (right panel).

runtimes for the non-convex and convex algorithms respectively. For the convex algorithm we set
λn “ 2

a

npp with pp “
ř

ij Aij{n
2, and for the non-convex method we use true values of the latent

space dimension. As the plots suggest, the relationship between runtimes and number of nodes
is approximately linear on a log-log scale. The slopes of the two plots reveal that the runtime is
close to Opn2q up to some poly-logarithmic multiplier for the non-convex algorithm, and close to
Opn3q for the convex algorithm. Furthermore, the runtimes do not seem sensitive to the latent
space dimension.

An obvious algorithmic competitor to consider is the Bayes fitting method proposed in
[31, 32]. Due to the Bayes nature of the method, it runs quite a bit slower than the present
two algorithms. However, such a comparison is unfair as the Bayes method provides substantial
additional information of the posterior distribution, such as credible sets.

6 Real data examples

In this section, we demonstrate how the model and fitting methods can be used to explore real world
datasets that involve large networks. In view of the discussion in Section 4.2 and Section 5, we can
always employ the inner-product model (1) as the working model. In particular, we illustrate three
different aspects. First, we consider community detection on networks without covariate. To this
end, we compare the performance of simple k-means clustering on fitted latent variables with several
state-of-the-art methods. Next, we investigate community detection on networks with covariates.
In this case, we could still apply k-means clustering on fitted latent variables. Whether there is
covariate or not, we can always visualize the network by plotting fitted latent variables in some
appropriate way. Furthermore, we study how fitting the model can generate new feature variables
to aid content-based classification of documents. The ability of feature generation also makes
the model and the fitting methods potentially useful in other learning scenarios when additional
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Figure 6: The log-log plot of runtimes (in seconds) for the non-convex and convex approaches.

network information among both training and test data is present.

6.1 Community detection without covariate

Community detection on networks without covariate has been intensively studied from both
theoretical and methodological viewpoints. Thus, it naturally serves as a test example for the
effectiveness of the model and fitting methods we have proposed in previous sections. To adapt
our method to community detection, we propose to partition the nodes by the following two step
procedure:

1. Fit the inner-product model to data with Algorithm 1;

2. Apply a simple k-means clustering on the fitted latent variables.

In what follows, we call this two step procedure LSCD (Latent Space based Community Detection),
and in all the examples below, we used Algorithm 3 for initialization of Algorithm 1. We shall
compare it with four state-of-the-art methods: (1) SCORE [35]: a normalized spectral clustering
method developed under degree-corrected block models (DCBM); (2) OCCAM [64]: a normalized
and regularized spectral clustering method for potentially overlapping community detection; (3)
CMM [19]: a convexified modularity maximization method developed under DCBM. (4) Latentnet
[42]: a hierachical bayesian method based on the latent space clustering model [30]. For theoretical
work on latent space model based community detection, see [52] which provided some theory when
the minimum node degree grows at a rate n?

logn
.

To avoid biasing toward our own method, we compare these methods on three datasets that
have been previously used in the original papers to justify the first three methods at comparison:
a political blog dataset [1] that was studied in [35] and two Facebook datasets (friendship networks
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of Simmons College and Caltech) [59] that were studied in [19]. To make fair comparison, for all
the methods, we supplied the true number of communities in each data. When fitting our model,
we set the latent space dimension to be the same as the number of communities.

In the latentnet package [42], there are three different ways to predict the community
membership. Using the notation of the R package [42], they are mkl$Z.K, mkl$mbc$Z.K and
mle$Z.K. We found that mkl$mbc$Z.K consistently outperformed the other two on these data
examples and we thus used it as the outcome of Latentnet. Due to the stochastic nature of the
Bayesian approach, we repeated it 20 times on each dataset and reported both the average errors
as well as the standard deviations (numbers in parentheses).

Table 1 summarizes the performance of all five methods on the three datasets. For columns
LSCD, SCORE and OCCAM, we set the latent space dimension or the number of eigenvectors of
the corresponding methods at k, where k is the number of clusters to seek in the data. Following
a referee’s suggestion, for columns LSCDk`1, SCOREk`1 and OCCAMk`1, we set the latent space
dimension or the number of eigenvectors at k`1. Among all the methods at comparison, all methods
except SCOREk`1 and OCCAMk`1 performed well on the political blog dataset with Latentnet
being the best, and LSCD outperformed all other methods on the two Facebook datasets. Moreover,
while SCORE and OCCAM get improvement in performance by using one more eigenvector, LSCD
is less sensitive to the choice of tuning parameter.

Dataset # Clusters LSCD SCORE OCCAM CMM

Political Blog 2 4.746% 4.746% 5.319% 5.074%
Simmons College 4 11.79% 23.57% 22.43% 12.04%

Caltech 8 17.97% 30.34% 31.19% 21.02%

Dataset # Clusters LSCDk`1 SCOREk`1 OCCAMk`1 Latentnet

Political Blog 2 4.583% 23.159% 7.201% 4.513% (0.117%)
Simmons College 4 10.99% 16.45% 15.13% 29.09% (1.226%)

Caltech 8 18.98% 25.42% 23.22% 38.47% (1.190%)

Table 1: A summary on proportions of mis-clustered nodes by different methods on three datasets.

In what follows, we provide more details on each dataset and on the performance of these
community detection methods on them.

Political Blog This well-known dataset was recorded by [1] during the 2004 U.S. Presidential
Election. The original form is a directed network of hyperlinks between 1490 political blogs. The
blogs were manually labeled as either liberal or conservative according to their political leanings.
The labels were treated as true community memberships. Following the literature, we removed the
direction information and focused on the largest connected component which contains 1222 nodes
and 16714 edges. Except for SCOREk`1 and OCCAMk`1, all other methods performed comparably
on this dataset with Latentnet achieving the smallest misclustered proportion.

Simmons College The Simmons College Facebook network is an undirected graph that contains
1518 nodes and 32988 undirected edges. For comparison purpose, we followed the same pre-
processing steps as in [19] by considering the largest connected component of the students with
graduation year between 2006 and 2009, which led to a subgraph of 1137 nodes and 24257 edges.
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It was observed in [59] that the class year has the highest assortativity values among all available
demographic characteristics, and so we treated the class year as the true community label. On
this dataset, LSCDk`1 and LSCD achieved the two lowest mis-clustered proportions among these
methods, with CMM a close third lowest.

An important advantage of model (1) is that it can provide a natural visualization of the
network. To illustrate, the left panel of Figure 7 is a 3D visualization of the network with the first
three coordinates of the estimated latent variables. From the plot, one can immediately see three
big clusters: class year 2006 and 2007 combined (red), class year 2008 (green) and class year 2009
(blue). The right panel zooms into the cluster that includes class year 2006 and 2007 by projecting
the the estimated four dimensional latent vectors onto a two dimensional discriminant subspace
that was estimated from the fitted latent variables and the clustering results of LSCD. It turned
out that class year 2006 and 2007 could also be reasonably distinguished by the latent vectors.
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Figure 7: The left panel is a visualization of the network with the first three coordinates of the
estimated latent vectors. The right panel is a visualization of students in class year 2006 and 2007
by projecting the four dimensional latent vectors to an estimated two dimensional discriminant
subspace.

Caltech Data In contrast to the Simmons College network in which communities are formed
according to class years, communities in the Caltech friendship network are formed according to
dorms [58, 59]. In particular, students spread across eight different dorms which we treated as true
community labels. Following the same pre-processing steps as in [19], we excluded the students
whose residence information was missing and considered the largest connected component of the
remaining graph, which contained 590 nodes and 12822 undirected edges. This dataset is more
challenging than the Simmons College network. Not only the size of the network halves but the
number of communities doubles. In some sense, it serves the purpose of testing these methods
when the signal is weak. LSCD and LSCDk`1 achieved the two highest overall accuracy on this
dataset, where LSCD reduced the third best error rate (achieved by CMM) by nearly 15%. See
the fourth and last rows of Table 1. Moreover, not taking into account LSCDk`1, SCOREk`1 or
OCCAMk`1, LSCD achieved the lowest maximum community-wise misclustering error among the
other five methods. See Figure 8 for a detailed comparison of community-wise misclustering rates
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of the five methods.

It is worth noting that the two spectral methods, SCORE and OCCAM, fell behind on the two
Facebook datasets. One possible explanation is that the structures of these Facebook networks are
more complex than the political blog network and so DCBM suffers more under-fitting on them. In
contrast, the latent space model (1) is more expressive and goes well beyond simple block structure.
The Latentnet approach did not perform well on the Facebook datasets, either. One possible reason
is the increased numbers of communities compared to the political blog dataset, which substantially
increased the difficulty of sampling from posterior distributions.
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Figure 8: Comparison of community-wise misclustering errors in Caltech friendship network. Top
row, left to right: LSCD, SCORE and OCCAM; bottom row, left to right: CMM and Latentnet.

6.2 Community detection with covariate

We now further demonstrate the power of the model and our proposed fitting methods by
considering community detection on networks with covariates. Again, we used the LSCD procedure
laid out in the previous subsection for community detection.

To this end, we consider a lawyer network dataset which was introduced in [44] that studied
the relations among 71 lawyers in a New England law firm. The lawyers were asked to check
the names of those who they socialized with outside work, who they knew their family and vice
versa. There are also several node attributes contained in the dataset: status (partner or associate),
gender, office, years in the firm, age, practice (litigation or corporate), and law school attended,
among which status is most assortative. Following [65], we took status as the true community label.

25



Furthermore, we symmetrized the adjacency matrix, excluded two isolated nodes and finally ended
up with 69 lawyers connected by 399 undirected edges.

Visualization and clustering results with and without covariate are shown in Figure 9. On the
left panel, as we can see, the latent vectors without adjustment by any covariate worked reasonably
well in separating the lawyers of different status and most of the 12 errors (red diamonds) were
committed on the boundary. On the right panel, we included a covariate ‘practice’ into the latent
space model: we set Xij “ Xji “ 1 if i ‰ j and the ith and the jth lawyers shared the same practice,
and Xij “ Xji “ 0 otherwise. Ideally, the influence on the network of being the same type of lawyer
should be ‘ruled out’ this way and the remaining influence on connecting probabilities should mainly
be the effect of having different status. In other words, the estimated latent vectors should mainly
contain the information of lawyers’ status and the effect of lawyers’ practice type should be absorbed
into the factor βX. The predicted community memberships of lawyers indexed by orange numbers
(39, 43, 45, 46, 51, 58) were successfully corrected after introducing this covariate. So the number
of mis-clustered nodes was reduced by 50%. We also observed that lawyer 37, though still mis-
clustered, was significantly pushed towards the right cluster.
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Figure 9: Visualization of the lawyer network using the estimated two dimensional latent vectors.
The left panel shows results without including any covariate while the right panel shows results
that used practice type information.

6.3 Network assisted learning

In this section, we demonstrate how fitting model (1) can generate new features to be used in
machine learning applications when additional network information is available. Consider a network
with n nodes and observed adjacency matrix A. Suppose the profile of the nodes is represented by
d dimensional features, denoted by x1, ¨ ¨ ¨ , xn P Rd. Assume each node is associated with a label
(or say, variable of interest), denoted by y, either continuous or categorical. Suppose the labels
are only observed for a subset of the nodes in the network. Without loss of generality, we assume
y1, ¨ ¨ ¨ , ym are observed for some m ă n. The goal here is to predict the labels ym`1, ¨ ¨ ¨ , yn based
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on the available information. Without considering the network information, this is the typical
setup of supervised learning with labeled training set px1, y1q, ¨ ¨ ¨ , pxm, ymq and unlabeled test set
xm`1, ¨ ¨ ¨ , xn. As one way to utilize the network information, we propose to supplement the existing
features in the prediction task with the latent vectors estimated by Algorithm 1 (without any edge
covariates).

To give a specific example, we considered the Cora dataset [47]. It contains 2708 machine
learning papers which were manually classified into 7 categories: Neural Networks, Rule Learning,
Reinforcement Learning, Probabilistic Methods, Theory, Genetic Algorithms and Case Based. The
dataset also includes the contents of the papers and a citation network, which are represented by
a document-word matrix (the vocabulary contains 1433 frequent words) and an adjacency matrix
respectively. The task is to predict the category of the papers based on the available information.
For demonstration purpose, we only distinguish neural network papers from the other categories,
and so the label y is binary.

Let W be the document-word matrix. In the present example, W is of size 2708ˆ 1433 (2708
papers and 1433 frequent words). An entry Wij equals 1 if the ith document contains the jth word.
Otherwise Wij equals zero. As a common practice in latent semantic analysis, to represent the
text information as vectors, we extract leading-d principal component loadings from WWJ as the
features. We chose d “ 100 by maximizing the prediction accuracy using cross-validation.

However, how to utilize the information contained in the citation network for the desired learning
problem is less straightforward. We propose to augment the latent semantic features with the latent
vectors estimated from the citation network. Based on the simple intuition that papers in the
same category are more likely to cite each other, we expect the latent vectors, as low dimensional
summary of the network, to contain information about the paper category. The key message we
want to convey here is that with vector representation of the nodes obtained from fitting the
latent space model, network information can be incorporated in many supervised and unsupervised
learning problems and other exploratory data analysis tasks.

Back to the Cora dataset, for illustration purpose, we fitted standard logistic regressions with
the following three sets of features:

1. the leading 100 principal component loadings;

2. estimated degree parameters α̂i and latent vectors ẑi obtained from Algorithm 1;

3. the combination of features in 1 and 2.

We considered three different latent space dimensions: k “ 2, 5, 10. As we can see from Figure 10,
the latent vectors contained a considerable amount of predictive power for the label. Adding the
latent vectors to the principal components of the word-document matrix could substantially reduce
misclassification rate.

7 Discussion

In this section, we discuss a number of related issues and potential problems for future research.

Data-driven choice of latent space dimension For the projected gradient descent method,
i.e., Algorithm 1, one needs to specify the latent space dimension k as an input. Although
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Figure 10: Boxplots of misclassification rates using logistic regression with different feature sets.
We randomly split the dataset into training and test sets with size ratio 3:1 for 500 times and
computed misclassification errors for each configuration. PC represents the leading 100 principal
component loadings of the document-word matrix. Zpkq represents the feature matrix where the
ith row is the concatenation of the estimated degree parameter pαi and the estimated latent vector
pzi with latent dimension k. PC+Zpkq means the combination of the two sets of features.

Theorem 4.4 suggests that the algorithm could still work reasonably well if the specified latent
space dimension is slightly off the target, it is desirable to have a systematic approach to selecting
k based on data. One possibility is to inspect the eigenvalues of GT in Algorithm 2 and set k to
be the number of eigenvalues larger than the parameter λn used in the algorithm.

Undirected networks with multiple covariates and weighted edges The model (1) and the
fitting methods can easily be extended to handle multiple covariates. See also Appendix B. When
the number of covariates is fixed, error bounds analogous to those in Section 4 can be expected.
We omit the details. Moreover, as pointed out in [29], latent space models for binary networks
such as (1) can readily be generalized to weighted networks, i.e., networks with non-binary edges.
We refer interested readers to the general recipe spelled out in Section 3.9 of [29]. If the latent
variables enter a model for weighted networks in the same way as in model (1), we expect the key
ideas behind our proposed fitting methods to continue to work.

Directed networks In many real world networks, edges are directed. Thus, it is a natural next
step to generalize model (1) to handle such data. Suppose for any i ‰ j, Aij “ 1 if there is an edge
pointing from node i to node j, and Aij “ 0 otherwise. We can consider the following model: for
any i ‰ j,

Aij
ind.
„ BernoullipPijq, with logitpPijq “ Θij “ αi ` γj ` βXij ` z

J
i wj . (25)

Here, the αi’s P R model degree heterogeneity of outgoing edges while the γj ’s P R model
heterogeneity of incoming edges. The meaning of β is the same as in model (1). To further
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accommodate asymmetry, we associate with each node two latent vectors zi, wi P Rk, where the
zi’s are latent variables influencing outgoing edges and the wi’s incoming edges. Such a model has
been proposed and used in the study of recommender system [2] and it is also closely connected
to the latent eigenmodel proposed in [33] if one further restricts zi P twi,´wiu for each i. Under
this model, the idea behind the convex fitting method in Section 3.1 can be extended. However,
it is more challenging to devise a non-convex fitting method with similar theoretical guarantees to
what we have in the undirected case. On the other hand, it should be relatively straightforward
to further extend the ideas to directed networks with multiple covariates and weighted edges. A
recent paper [62] has appeared after the initial posting of the present manuscript, which obtained
some interesting results along these directions.

Latent eigenmodel As pointed out by Hoff [33], it is still restrictive to require the latent
component G in (2) to be positive semi-definite. In particular, in the same spirit as the latent
eigenmodel proposed in [33], it is of great interest to allow the G term in (2) to be any symmetric
(as opposed to positive semi-definite) matrix that has a low (effective) rank. In terms of fitting such
a model, it is conceivable that the convex approach in (11) will continue to work with the trace
penalty term replaced by a generic nuclear norm penalty. On the other hand, to fit the model to
large networks, designing non-convex fitting method and establishing their theoretical properties is
an interesting topic for further research. Moreover, they may approximate other interesting models,
such as mixed membership stochastic blockmodels [3, 5, 36].

8 Proofs of main theorems

We present here the proofs of Theorem 4.3 and Theorem 4.4 since Theorem 4.1 is a corollary of the
former and Theorem 4.2 a corollary of the latter. Throughout the proof, let P “ pσpΘ‹,ijqq and
P 0 “ pPij1i‰jq. Thus, EpAq “ P 0. Moreover, for any Θ P Rnˆn, define

hpΘq “ ´
n
ÿ

i,j“1

tAijΘij ` logp1´ σpΘijqqu. (26)

For conciseness, we denote Fgpn,M1,M2, Xq by Fg throughout the proof. We focus on the case
where X is nonzero, and the case of X “ 0 is simpler.

8.1 Proof of Theorem 4.3

Let Z‹ P Rnˆk such that Z‹Z
J
‹ is the best rank k approximation to G‹. For any matrix M , let

colpMq be the subspace spanned by the column vectors of M and rowpMq “ colpMJq. For any
subspace S of Rn (or Rnˆn), let SK be its orthogonal complement, and PS the projection operator
onto the subspace. The proof relies on the following two lemmas.

Lemma 8.1. Let MK
k “ tM P Rnˆn : rowpMq Ă colpZ‹q

K and colpMq Ă colpZ‹q
Ku and Mk

be its orthogonal complement in Rnˆn under trace inner product. If λn ě 2 }A´ P }op, then for
sGk “ PMK

k
G‹, we have

}∆
pG
}˚ ď 4

?
2k}PMk

∆
pG
}F ` 2}∆

pα1n
J}F `

2

λn
|xA´ P,∆

pβ
Xy| ` 4} sGk}˚.
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Proof. See Section 8.1.1.

Lemma 8.2. For any k ě 1 such that Assumption 4.1 holds. Choose λn ě max t2}A´ P }op, 1u
and |xA´ P,Xy| ď λn

?
k}X}F. There exist constants C ą 0 and 0 ď c ă 1 such that

}∆
pΘ
}2F ě p1´ cq

`

}∆
pG
}2F ` 2}∆

pα1n
J}2F ` }∆pβ

X}2F
˘

´ C} sGk}
2
˚{k, and

}∆
pΘ
}2F ď p1` cq

`

}∆
pG
}2F ` 2}∆

pα1n
J}2F ` }∆pβ

X}2F
˘

` C} sGk}
2
˚{k.

Proof. See Section 8.1.2.

Lemma 8.3. There exist absolute constants c, C such that for any Θ P Fg with probability at least
1´ n´c, the following inequality holds

}A´ P }op,

@

A´ P,X
D

?
k}X}F

ď C
b

max tne´M2 , log nu.

Proof. For any Θ in the parameter space, the off diagonal elements of Θ are uniformly bounded
from above by ´M2, and so maxi,j P

0
ij ď e´M2 . Moreover, maxi Pii ď 1 under our assumption.

Thus, }A ´ P }op ď }A ´ P 0}op ` }P
0 ´ P }op ď }A ´ P 0}op ` 1. Together with Lemma 8.12, this

implies that there exist absolute constants c1, C ą 0 such that uniformly over the parameter space

P
ˆ

}A´ P }op ď C
b

max tne´M2 , log nu

˙

ě 1´ n´c1 . (27)

Since the diagonal entries of X are all zeros, we have xA´P,Xy “ xA´P 0, Xy. Hence, Lemma 8.13
implies that uniformly over the parameter space,

P

˜

@

A´ P,X
D

?
k}X}F

ď C
b

max tne´M2 , log nu

¸

ě 1´ 3 exp
`

´C2 max
 

ne´M2 , log n
(

k{8
˘

ě 1´ 3n´C
2k{8.

(28)

Combining (27) and (27) finishes the proof.

Proof of Theorem 4.3 1˝ We first establish the deterministic bound. Observe that pΘ “ pα1n
J`

1npα
J` pβX ` pG is the optimal solution to (11), and that the true parameter Θ‹ “ α‹1n

J` 1nα
J
‹ `

β‹X `G‹ is feasible. Thus, we have the basic inequality

hppΘq ´ hpΘ‹q ` λnp} pG}˚ ´ }G‹}˚q ď 0, (29)

where h is defined in (26). For any Θ P Fg, |Θij | ď M1 for all i, j and so for τ “ eM1{p1 ` eM1q2,
the Hessian

∇2hpΘq “ diag
`

vec
`

σpΘq ˝ p1´ σpΘqq
˘˘

ľ τIn2ˆn2 .

For any vector b, diagpbq is the diagonal matrix with elements of a on its diagonals. For any matrix
B “ rb1, . . . , bns P Rnˆn, vecpBq P Rn2

is obtained by stacking b1, . . . , bn in order. For any square
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matrices A and B, A ľ B if and only if A ´ B is positive semi-definite. With the last display,
Taylor expansion gives

hppΘq ´ hpΘ‹q ě x∇ΘhpΘ‹q,∆
pΘ
y `

τ

2
}∆

pΘ
}2F.

On the other hand, triangle inequality implies

λnp} pG}˚ ´ }G‹}˚q ě ´λn}∆G}˚.

Together with (29), the last two displays imply

x∇ΘhpΘ‹q,∆
pΘ
y `

τ

2
}∆

pΘ
}F ´ λn}∆

pG
}˚ ď 0.

Triangle inequality further implies

τ

2
}∆Θ}

2
F ď λn}∆G}˚ ` |x∇ΘhpΘ‹q,∆

pG
`∆

pα1n
J ` 1n∆J

pαy| ` |∆pβ
x∇ΘhpΘ‹q, Xy|

“ λn}∆G}˚ ` |xA´ P,∆
pG
` 2∆

pα1n
Jy| ` |∆

pβ
xA´ P,Xy|

ď λn}∆G}˚ ` |xA´ P,∆
pG
` 2∆

pα1n
Jy| ` λn

?
k}∆

pβ
X}F.

(30)

Here the equality is due to the symmetry of A´ P and the last inequality is due to the condition
imposed on λn. We now further upper bound the first two terms on the rightmost side. First, by
Lemma 8.1 and the assumption that |xA´ P,Xy| ď λn

?
k}X}F, we have

}∆G}˚ ď 4
?

2k }PMk
∆

pG
}F ` 2}∆

pα1n
J}F ` 2

?
k }∆

pβ
X}F ` 4} sGk}˚. (31)

Moreover, Hölder’s inequality implies

|xA´ P,∆
pG
` 2∆

pα1n
Jy| ď }A´ P }opp}∆

pG
}˚ ` 2}∆

pα1n
J}˚q

“ }A´ P }opp}∆
pG
}˚ ` 2}∆

pα1n
J}Fq

ď
λn
2
p}∆

pG
}˚ ` 2}∆

pα1n
J}Fq.

(32)

Here the equality holds since ∆
pα1n

J is a rank one matrix. Substituting (31) and (32) into (30), we
obtain that

τ

2
}∆

pΘ
}2F ď

3λn
2
}∆

pG
}˚ ` λn}∆

pα1n
J}F ` λn

?
k}∆

pβ
X}F

ď
3λn
2
p4
?

2k}PMk
∆

pG
}F ` 2}∆

pα1n
J}F ` 2

?
k}∆

pβ
X}F ` 4} sGk}˚q

` λn}∆
pα1n

J}F ` λn
?
k}∆

pβ
X}F

ď C1λn
`

?
k p}PMk

∆
pG
}F ` }∆

pα1n
J}F ` }∆

pβ
X}Fq ` } sGk}˚

˘

.

By Lemma 8.2, we can further bound the righthand side as

τ

2
}∆

pΘ
}2F ď C2λn

?
k p}∆

pΘ
}F ` } sGk}˚{

?
kq ` C1λn} sGk}˚

ď C2λn
?
k }∆

pΘ
}F ` pC1 ` C2qλn} sGk}˚.
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Solving the quadratic inequality, we obtain

}∆
pΘ
}2F ď C 1

ˆ

λ2
nk

τ2
`
λn} sGk}˚

τ

˙

.

Note that τ ě ce´M1 for some positive constant c. Therefore,

}∆
pΘ
}2F ď C

`

e2M1λ2
nk ` e

M1λn} sGk}˚
˘

.

2˝ We now turn to the probabilistic bound. By Lemma 8.3, there exist constants c1, C1 such
that for any λn ě 2C1

a

max tne´M2 , log nu, we have uniformly over the parameter space that

P

˜

λn ě 2 max

#

}A´ P }op,

@

A´ P,X
D

?
k}X}F

+¸

ě 1´ n´c1 .

Denote this event as E. Since the conditions on λn in the first part of Theorem 4.3 are satisfied on
E, it follows that there exists an absolute constant C ą 0 such that uniformly over the parameter
space, with probability at least 1´ n´c1 , }∆

pΘ
}2F ď Cφ2

n. This completes the proof.

8.1.1 Proof of Lemma 8.1

By the convexity of hpΘq,

hppΘq ´ hpΘ‹q ě x∇ΘhpΘ‹q,∆
pΘ
y

“ ´xA´ P, ∆
pG
` 2∆

pα1n
J `∆

pβ
Xy

ě ´ }A´ P }op

`

}∆
pG
}˚ ` 2}∆

pα1n
J}˚

˘

´ |xA´ P,∆
pβ
Xy|

ě ´
λn
2

`

}PMk
∆

pG
}˚ ` }PMK

k
∆

pG
}˚ ` 2}∆

pα1n
J}F

˘

´ |xA´ P,∆
pβ
Xy| .

The last inequality holds since λn ě 2 }A´ P }op and PMk
` PMK

k
equals identity. On the other

hand, by the definition of sGk,

} pG}˚ ´ }G‹}˚ “ }PMk
G‹ ` sGk ` PMk

∆
pG
` PMK

k
∆

pG
}˚ ´ }PMk

G‹ ` sGk}˚

ě }PMk
G‹ ` PMK

k
∆

pG
}˚ ´ } sGk}˚ ´ }PMk

∆
pG
}˚ ´ }PMk

G‹}˚ ´ } sGk}˚

“ }PMk
G‹}˚ ` }PMK

k
∆

pG
}˚ ´ 2} sGk}˚ ´ }PMk

∆
pG
}˚ ´ }PMk

G‹}˚

“ }PMK
k

∆
pG
}˚ ´ }PMk

∆
pG
}˚ ´ 2} sGk}˚ .

Here, the second last equality holds since PMk
G‹ and PMK

k
∆

pG
have orthogonal column and row

spaces. Furthermore, since pΘ is the optimal solution to (11), and Θ‹ is feasible, the basic inequality
and the last two displays imply

0 ě hppΘq ´ hpΘ‹q ` λn
`

} pG}˚ ´ }G‹}˚
˘

ě ´
λn
2

`

}PMk
∆

pG
}˚ ` }PMK

k
∆

pG
}˚ ` 2}∆

pα1n
J}F

˘

´ |xA´ P,∆
pβ
Xy| ` λn

`

}PMK
k

∆
pG
}˚ ´ }PMk

∆
pG
}˚ ´ 2} sGk}˚

˘

“
λn
2

`

}PMK
k

∆
pG
}˚ ´ 3}PMk

∆
pG
}˚ ´ 4} sGk}˚ ´ 2}∆

pα1n
J}F

˘

´ |xA´ P,∆
pβ
Xy| .
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Rearranging the terms leads to

}PMK
k

∆
pG
}˚ ď 3}PMk

∆
pG
}˚ ` 2}∆

pα1n
J}F `

2

λn
|xA´ P,∆

pβ
Xy| ` 4} sGk}˚ ,

and triangle inequality further implies

}∆
pG
}˚ ď 4}PMk

∆
pG
}˚ ` 2}∆

pα1n
J}F `

2

λn
|
@

A´ P,∆
pβ
X
D

| ` 4} sGk}˚ .

Last but not least, note that the rank of PMk
∆

pG
is at most 2k, and so we complete the proof by

further bounding the first term on the righthand side of the last display by 4
?

2k}PMk
∆

pG
}F.

8.1.2 Proof of Lemma 8.2

By definition, we have the decomposition

}∆
pΘ
}2F “ }∆ pG

`∆
pα1n

J ` 1n∆J
pα `∆

pβ
X}2F

“ }∆
pG
`∆

pα1n
J ` 1n∆J

pα}
2
F ` }∆pβ

X}2F ` 2 x∆
pG
`∆

pα1n
J ` 1n∆J

pα ,∆pβ
Xy

“ }∆
pG
}2F ` 2}∆

pα1n
J}2F ` 2 Trp∆

pα1n
J∆

pα1n
Jq ` }∆

pβ
X}2F ` 2 x∆

pG
` 2∆

pα1n
J,∆

pβ
Xy .

Here the last equality is due to the symmetry of X and the fact that ∆
pG
1n “ 0. Since

Trp∆
pα1n

J∆
pα1n

Jq “ Trp1n
J∆

pα1n
J∆

pαq “ |1n
J∆

pα|
2 ě 0, the last display implies

}∆
pΘ
}2F ě }∆ pG

}2F ` 2}∆
pα1n

J}2F ` }∆pβ
X}2F ` 2 x∆

pG
` 2∆

pα1n
J,∆

pβ
Xy. (33)

Furthermore, we have

|x∆
pG
` 2∆

pα1n
J,∆

pβ
Xy|

ď }∆
pG
}˚}∆

pβ
X}op ` 2}∆

pα1n
J}˚}∆

pβ
X}op

ď
`

4
?

2k}PMk
∆

pG
}F ` 4}∆

pα1n
J}F `

2

λn
|xA´ P,∆

pβ
Xy| ` 4} sGk}˚

˘

}∆
pβ
X}op

ď
`

4
?

2k}PMk
∆

pG
}F ` 4}∆

pα1n
J}F ` 2

?
k}∆

pβ
X}F ` 4} sGk}˚

˘

}∆
pβ
X}F

a

rstablepXq

ď
C0

?
k

a

rstablepXq

`

}∆
pG
}2F ` 2}∆

pα1n
J}2F ` }∆pβ

X}2F
˘

`
4} sGk}˚

a

rstablepXq
}∆

pβ
X}F

ď
C0

?
k

a

rstablepXq

`

}∆
pG
}2F ` 2}∆

pα1n
J}2F ` }∆pβ

X}2F
˘

`
2} sGk}

2
˚

c0 rstablepXq
` 2c0}∆

pβ
X}2F

for any constant c0 ě 0. Here, the first inequality holds since the operator norm and the nuclear
norm are dual norms under trace inner product. The second inequality is due to Lemma 8.1 and
the fact that }∆

pα1n
J}˚ “ }∆

pα1n
J}F since ∆

pα1n
J is of rank one. The third inequality is due to

the definition of rstablepXq and that |xA´ P,Xy| ď λn
?
k}X}F by assumption and ∆

pβ
is a scalar.

The fourth inequality is due to Assumption 4.1 and the last due to 2ab ď a2 ` b2 for any a, b P R.
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Substituting these inequalities into (33) leads to

}∆
pΘ
}2F ě

˜

1´
2C0

?
k

a

rstablepXq

¸

}∆
pG
}2F `

˜

2´
2C0

?
k

a

rstablepXq

¸

}∆
pα1n

J}2F

`

˜

1´
2C0

?
k

a

rstablepXq
´ 4c0

¸

}∆
pβ
X}2F ´

4} sGk}
2
˚

c0 rstablepXq
.

On the other hand, notice that Trp∆
pα1n

J∆
pα1n

Jq ď }∆
pα1n

J}2F , we have

}∆
pΘ
}2F ď

˜

1`
2C0

?
k

a

rstablepXq

¸

}∆
pG
}2F `

˜

4`
2C0

?
k

a

rstablepXq

¸

}∆
pα1n

J}2F

`

˜

1`
2C0

?
k

a

rstablepXq
` 4c0

¸

}∆
pβ
X}2F `

4} sGk}
2
˚

c0 rstablepXq
.

Together with Assumption 4.1, the last two displays complete the proof.

8.2 Proofs of Lemma 4.1 and Theorem 4.4

Again, we directly prove the results under the general model. Recall that G‹ « UkDkU
J
k is the

top-k eigen-decomposition of G‹, Z‹ “ UkD
1{2
k , sGk “ G‹ ´ UkDkU

J
k and ∆Gt “ ZtpZtqJ ´ Z‹Z

J
‹ .

For the convenience of analysis, we will instead analyze the following quantity,

ret “
›

›Z0
›

›

2

op
}∆Zt}

2
F ` 2}∆αt1n

J}2F ` }∆βtX}
2
F.

Under Assumption 4.2,

}∆Z0}op ď δ }Z‹}op , p1´ δqet ď ret ď p1` δqet. (34)

for some sufficiently small constant δ P p0, 1q. The rest of the proof relies on the following lemmas.

Lemma 8.4. For any Θ‹ P Fgpn,M1,M2, Xq, max
1ďiďn

}pZ‹qi}
2
2 ďM1{3.

Proof. By definition, G‹´Z‹Z
J
‹ P Sn`, which implies, eJi

`

G‹ ´ Z‹Z
J
‹

˘

ei “ Gii´}pZ‹qi}
2
2 ě 0, that

is }pZ‹qi}
2
2 ď Gii ďM1{3 for any 1 ď i ď n.

Lemma 8.5. If Assumption 4.1 holds, there exist constants 0 ď c0 ă 1 and C0 such that

}∆Θt}
2
F ě p1´ c0q

`

}ZtpZtqJ ´ Z‹Z
J
‹ }

2
F ` 2}∆αt1n

J}2F ` }∆βtX}
2
F

˘

´ C0} sGk}
2
F,

}∆Θt}
2
F ď p1` c0q

`

}ZtpZtqJ ´ Z‹Z
J
‹ }

2
F ` 2}∆αt1n

J}2F ` }∆βtX}
2
F

˘

` C0} sGk}
2
F.

Proof. See Section 8.2.1.

Lemma 8.6. Under Assumption 4.1, let ζn “ maxt2 }A´ P }op , |xA ´ P,X{ }X}Fy|{
?
k, 1u, if

}∆Zt}F ď c0e
´M1 }Z‹}op {κ

2
Z‹

and }Z‹}
2
op ě C0e

M1κ2
Z‹
ζ2
n for sufficiently small constant c0 and

sufficiently large constant C0, there exist a constant c such that, for any η ď c, there exist positive
constants ρ and C,

ret`1 ď

´

1´
η

eM1κ2
ρ
¯

ret ` ηC
`

} sGk}
2
F ` e

M1ζ2
nk

˘

.
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Proof. See Section 8.2.2.

Lemma 8.7. Under Assumption 4.1, let ζn “ maxt2 }A´ P }op , |xA ´ P,X{ }X}Fy|{
?
k, 1u,

if }Z‹}
2
op ě C1κ

2
Z‹
ζ2
ne
M1 max

!
b

η} sGk}
2
F{ζ

2
n,
a

ηkeM1 , 1
)

for a sufficiently large constant C1 and

re0 ď c2
0e
´2M1 }Z‹}

4
op {4κ

4
Z‹

, then for all t ě 0,

}∆Zt}F ď
c0

eM1κ2
Z‹

}Z‹}op .

Proof. See Section 8.2.3.

Proof of Lemma 4.1 By Lemma 8.5, notice that sGk “ 0 under the inner product model,

}∆Θt}
2
F ě p1´ c0q

`

}ZtpZtqJ ´ Z‹Z
J
‹ }

2
F ` 2}∆αt1n

J}2F ` }∆βtX}
2
F

˘

,

}∆Θt}
2
F ď p1` c0q

`

}ZtpZtqJ ´ Z‹Z
J
‹ }

2
F ` 2}∆αt1n

J}2F ` }∆βtX}
2
F

˘

.
(35)

By Lemma 8.9,
}ZtpZtqJ ´ Z‹Z

J
‹ }

2
F ě 2p

?
2´ 1qκ´2

Z‹
}Z‹}

2
op }∆Zt}

2
F

which implies,

et ď
κ2
Z‹

2p
?

2´ 1q
}ZtpZtqJ ´ Z‹Z

J
‹ }

2
F ` 2}∆αt1n

J}2F ` }∆βtX}
2
F ď

κ2
Z‹

2p
?

2´ 1qp1´ c0q
}∆Θt}

2
F.

Similarly, by Lemma 8.10, when distpZt, Z‹q ď c }Z‹}op,

}ZtpZtqJ ´ Z‹Z
J
‹ }

2
F ď p2` cq

2 }Z‹}
2
op }∆Zt}

2
F,

and this implies,

et ě
1

p2` cq2
}ZtpZtqJ ´ Z‹Z

J
‹ }

2
F ` 2}∆αt1n

J}2F ` }∆βtX}
2
F

ě
1

p2` cq2p1` c0q
}Z‹}

2
op }∆Zt}

2
F.

Proof of Theorem 4.4 Consider the deterministic bound first. By Lemma 8.7, for all t ě 0,

}∆Zt}F ď
c0

eM1κ2
Z‹

}Z‹}op .

Then apply Lemma 8.6, there exists positive constants ρ and M such that for all t ě 0,

ret`1 ď

˜

1´
η

eM1κ2
Z‹

ρ

¸

ret ` ηC
`

} sGk}
2
F ` e

M1ζ2
nk

˘

.
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Therefore,

ret ď

˜

1´
η

eM1κ2
Z‹

ρ

¸t

re0 `

t
ÿ

i“0

ηC
`

} sGk}
2
F ` e

M1ζ2
nk

˘

˜

1´
η

eM1κ2
Z‹

ρ

¸i

ď

˜

1´
η

eM1κ2
Z‹

ρ

¸t

re0 `
Cκ2

ρ

`

e2M1ζ2
nk ` e

M1} sGk}
2
F

˘

.

Notice that 0.9et ď ret ď 1.1et,

et ď 2

˜

1´
η

eM1κ2
Z‹

ρ

¸t

e0 `
2Cκ2

ρ

`

e2M1ζ2
nk ` e

M1} sGk}
2
F

˘

.

Given the last display, the proof of the probabilistic bound is nearly the same as that of the
counterpart in Theorem 4.3 and we leave out the details.

8.2.1 Proof of Lemma 8.5

By definition,

}∆Gt}
2
F “ }Z

tpZtqJ ´ Z‹Z
J
‹ ´

sGk}
2
F

ě }ZtpZtqJ ´ Z‹Z
J
‹ }

2
F ` }

sGk}
2
F ´ 2|

@

ZtpZtqJ ´ Z‹Z
J
‹ ,

sGk
D

|

ě }ZtpZtqJ ´ Z‹Z
J
‹ }

2
F ` }

sGk}
2
F ´ 2}ZtpZtqJ ´ Z‹Z

J
‹ }F}

sGk}F

ě }ZtpZtqJ ´ Z‹Z
J
‹ }

2
F ` }

sGk}
2
F ´ c1}Z

tpZtqJ ´ Z‹Z
J
‹ }

2
F ´ c

´1
1 } sGk}

2
F

ě p1´ c1q}Z
tpZtqJ ´ Z‹Z

J
‹ }

2
F ´ pc

´1
1 ´ 1q} sGk}

2
F

where the second last inequality comes from a2 ` b2 ě 2ab and holds for any c1 ě 0. Similarly, it
could be shown that

}∆Gt}
2
F ď p1` c1q}Z

tpZtqJ ´ Z‹Z
J
‹ }

2
F ` p1` c

´1
1 q} sGk}

2
F.

Expanding the term }∆Θt}
2
F, we obtain

}∆Θt}
2
F “ }∆Gt `∆αt1n

J ` 1n∆J
αt `∆βtX}

2
F

“ }∆Gt `∆αt1n
J ` 1n∆J

αt}
2
F ` }∆βtX}

2
F ` 2

@

∆Gt `∆αt1n
J ` 1n∆J

αt ,∆βtX
D

“ }∆Gt}
2
F ` 2}∆αt1n

J}2F ` 2 Trp∆αt1n
J∆αt1n

Jq ` }∆βtX}
2
F

` 2
@

∆Gt ` 2∆αt1n
J,∆βtX

D

,

where the last equality is due to the symmetry of X. Notice that Trp∆
pα1n

J∆
pα1n

Jq “

Trp1n
J∆

pα1n
J∆

pαq “ |1n
J∆

pα|
2 ě 0,

}∆Θt}
2
F ě p1´ c1q}Z

tpZtqJ ´ Z‹Z
J
‹ }

2
F ´ pc

´1
1 ´ 1q} sGk}

2
F ` 2}∆αt1n

J}2F ` }∆βtX}
2
F

` 2
@

ZtpZtqJ ´ Z‹Z
J
‹ ` 2∆αt1n

J,∆βtX
D

´ 2
@

sGk,∆βtX
D

.
(36)
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By Hölder’s inequality,

|
@

ZtpZtqJ ´ Z‹Z
J
‹ ` 2∆αt1n

J,∆βtX
D

| ď
`

}ZtpZtqJ ´ Z‹Z
J
‹ }˚ ` 2}∆αt1n

J}˚
˘ ›

›∆βtX
›

›

op

ď

´?
2k}ZtpZtqJ ´ Z‹Z

J
‹ }F ` 2}∆αt1n

J}F

¯

›

›∆βtX
›

›

op

ď

´?
2k}ZtpZtqJ ´ Z‹Z

J
‹ }F ` 2}∆αt1n

J}F

¯

}∆βtX}F{
a

rstablepXq

ď C1

d

k

rstablepXq

`

}ZtpZtqJ ´ Z‹Z
J
‹ }

2
F ` }∆αt1n

J}2F ` }∆βtX}
2
F

˘

,

and for any c ą 0,

|
@

sGk,∆βtX
D

| ď } sGk}F}∆βtX}F ď c}∆βtX}
2
F `

1

4c
} sGk}

2
F.

Substitute these inequalities into (36),

}∆
pΘ
}2F ě

˜

1´ 2C1

d

k

rstablepXq
´ c1

¸

}ZtpZtqJ ´ Z‹Z
J
‹ }

2
F `

˜

2´ 2C1

d

k

rstablepXq

¸

}∆αt1n
J}2F

`

˜

1´ 2C1

d

k

rstablepXq
´ 2c

¸

}∆βtX}
2
F ´ pc

´1
1 ` 1{2cq} sGk}

2
F.

On the other hand, notice that Trp∆αt1n
J∆αt1n

Jq ď }∆αt1n}
2
F , we have

}∆
pΘ
}2F ď

˜

1` 2C1

d

k

rstablepXq
` c1

¸

}ZtpZtqJ ´ Z‹Z
J
‹ }

2
F `

˜

2` 2C1

d

k

rstablepXq

¸

}∆
pα1n

J}2F

`

˜

1` 2C1

d

k

rstablepXq
` 2c

¸

}∆βtX}
2
F ` pc

´1
1 ` 1{2cq} sGk}

2
F.

This completes the proof.

8.2.2 Proof of Lemma 8.6

Let Θt “ αt1n
J ` 1npα

tqJ ` βtX ` ZtpZtqJ, Rt “ arg min
RPRrˆr,RRJ“Ir

}Zt ´ Z‹R}F, rRt “

arg min
RPRrˆr,RRJ“Ir

} rZt ´ Z‹R}F and ∆Zt “ Zt ´ Z‹R
t, then

}Zt`1 ´ Z‹R
t`1}2F ď }Z

t`1 ´ Z‹ rR
t`1}2F ď }

rZt`1 ´ Z‹ rR
t`1}2F ď }

rZt`1 ´ Z‹R
t}2F.

The first and the last inequalities are due to the definition of Rt`1 and rRt`1, and the second
inequality is due to the projection step. Plugging in the definition of rZt`1, we obtain

}Zt`1 ´ Z‹R
t`1}2F ď }Z

t ´ Z‹R
t}2F ` η

2
Z}∇hpΘtqZt}2F ´ 2ηZ

@

∇hpΘtqZt, Zt ´ Z‹R
t
D

“ }Zt ´ Z‹R
t}2F ` η

2
Z}∇hpΘtqZt}2F ´ 2ηZ

@

∇hpΘtq, pZt ´ Z‹R
tqpZtqJ

D

.
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Note that

ZtpZtqJ ´ Z‹R
tpZtqJ “

1

2
pZtpZtqJ ´ Z‹Z

J
‹ q `

1

2
pZtpZtqJ ` Z‹Z

J
‹ q ´ Z‹RpZ

tqJ.

Also due to the symmetry of ∇hpΘtq,

@

∇hpΘtq,
1

2
pZtpZtqJ ` Z‹Z

J
‹ q ´ Z‹RpZ

tqJ
D

“
1

2

@

∇hpΘtq,∆Zt∆
J
Zt
D

.

Therefore, combine the above three equations,

}Zt`1 ´ Z‹R
t`1}2F ď }Z

t ´ Z‹R
t}2F ` η

2
Z}∇hpΘtqZt}2F ´ ηZ

@

∇hpΘtq,∆Zt∆
J
Zt
D

´ ηZ
@

∇hpΘtq, pZtpZtqJ ´ Z‹Z
J
‹ q

D

.
(37)

By similar and slightly simpler arguments, we also obtain

}αt`1 ´ α‹}
2 ď }rαt`1 ´ α‹}

2

“ }αt ´ α‹}
2 ` η2

α}∇hpΘtq1n}
2
F ´ 2ηα

@

∇hpΘtq1n, α
t ´ α‹

D

. (38)

}βt`1 ´ β‹}
2 ď }rβt`1 ´ β‹}

2

“ }βt ´ β‹}
2 ` η2

β

@

∇hpΘtq, X
D2
´ 2ηβ

@

∇hpΘtq, pβt ´ β‹qX
D

. (39)

For hpΘq in (26), define

HpΘq “ EΘ‹rhpΘqs ´
n
ÿ

i“1

ΘiiσpΘ‹,iiq.

Then it is straightforward to verify that ∇HpΘq “ σpΘq ´ σpΘ‹q and so ∇HpΘ‹q “ 0. With

ηZ “ η{}Z0}2op, ηα “ η{2n, ηβ “ η{2}X}2F , the weighted sum
›

›Z0
›

›

2

op
ˆ(37)+2nˆ(38)+}X}2Fˆ(39)

is equivalent to

ret`1 ď ret ´ η
@

∇hpΘtq, ZtpZtqJ ´ Z‹Z
J
‹ ` 2pαt ´ α‹q1n

J ` pβt ´ β‹qX `∆Zt∆
J
Zt
D

`

´

›

›Z0
›

›

2

op
η2
Z}∇hpΘtqZt}2F ` 2nη2

α}∇hpΘtq1n}
2
F ` }X}

2
Fη

2
β

@

∇hpΘtq, X
D2
¯

ď ret ´ η
@

∇hpΘtq,∆
sΘt
D

´ η
@

∇hpΘtq,∆Zt∆
J
Zt
D

`

˜

η2

}Z0}
2
op

}∇hpΘtqZt}2F `
η2

2n
}∇hpΘtq1n}

2
F `

η2

4}X}2F

@

∇hpΘtq, X
D2

¸

,

where ∆
sΘt “ ZtpZtqJ ´ Z‹Z

J
‹ `∆αt1n

J ` 1np∆αtq
J `∆βtX “ ∆Θt ´

sGk. Then, simple algebra
further leads to

ret`1 ď ret ´ η
@

∇hpΘtq ´∇HpΘtq,∆
sΘt
D

´ η
@

∇HpΘtq,∆Θt
D

´ η
@

∇HpΘtq, sGk
D

´ η
@

∇hpΘtq,∆Zt∆
J
Zt
D

`

˜

η2

}Z0}
2
op

}∇hpΘtqZt}2F `
η2

2n
}∇hpΘtq1n}

2
F `

η2

4}X}2F

@

∇hpΘtq, X
D2

¸

ď ret ´ η
@

∇HpΘtq,∆Θt
D

` η|
@

∇hpΘtq ´∇HpΘtq,∆
sΘt
D

| ` η|
@

∇hpΘq,∆Zt∆
J
Zt
D

|

` η|
@

∇HpΘtq, sGk
D

| ` η2

˜

1

}Z0}
2
op

}∇hpΘtqZt}2F `
1

2n
}∇hpΘtq1n}

2
F `

1

4}X}2F

@

∇hpΘtq, X
D2

¸

“ ret ´ ηD1 ` ηD2 ` ηD3 ` ηD4 ` η
2D5. (40)
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In what follows, we control Note that for any Θ P Fg,

1

4
In2ˆn2 ľ ∇2HpΘq “ diag

´

vec
`

σpΘq ˝ p1´ σpΘqq
˘

¯

ľ τIn2ˆn2

where τ “ eM1{p1` eM1q2 — e´M1 . Hence Hp¨q is τ -strongly convex and 1
4 -smooth. Further notice

that ∇HpΘ‹q “ 0, then by Lemma 8.11,

D1 “
@

∇HpΘtq,∆Θt
D

ě
τ{4

τ ` 1{4
}∆Θt}

2
F `

1

τ ` 1{4
}σpΘtq ´ σpΘ‹q}

2
F.

By triangle inequality,

D2 ď |
@

σpΘ‹q ´A,Z
tpZtqJ ´ Z‹Z

J
‹

D

| ` 2|
@

σpΘ‹q ´A,∆αt1n
J
D

| ` |
@

σpΘ‹q ´A,∆βtX
D

|.

Recall that ζn “ maxt2 }A´ P }op , |xA´ P,X{ }X}Fy|{
?
k, 1u, and so

D2 ď
ζn
2
}ZtpZtqJ ´ Z‹Z

J
‹ }˚ ` ζn}∆αt1n

J}˚ ` ζn
?
k}∆βtX}F.

Notice that ZtpZtqJ ´ Z‹Z
J
‹ has rank at most 2k,

D2 ď
ζn
?

2k

2
}ZtpZtqJ ´ Z‹Z

J
‹ }F ` ζn}∆αt1n

J}F ` ζn
?
k}∆βtX}F.

Further by Cauchy-Schwarz inequality, there exists constant C2 such that for any positive constant
c2 which we will specify later,

D2 ď c2

`

}ZtpZtqJ ´ Z‹Z
J
‹ }

2
F ` 2}∆αt1n

J}2F ` }∆βtX}
2
F

˘

`
C2

4c2
ζ2
nk.

By Lemma 8.5, there exist constants c1, C1 such that

D1 ´D2 ě

ˆ

p1´ c1qτ

4τ ` 1
´ c2

˙

`

}ZtpZtqJ ´ Z‹Z
J
‹ }

2
F ` 2}∆αt1n

J}2F ` }∆βtX}
2
F

˘

`
1

τ ` 1{4
}σpΘtq ´ σpΘ‹q}

2
F ´ C1} sGk}

2
F ´

C2

4c2
ζ2
nk.

(41)

By Lemma 8.9,

D1 ´D2 ě
2p
?

2´ 1q

κ2

ˆ

p1´ c1qτ

4τ ` 1
´ c2

˙

et `
1

τ ` 1{4
}σpΘtq ´ σpΘ‹q}

2
F ´ C1} sGk}

2
F ´

C2

4c2
ζ2
nk.

To bound D3, notice that ∆Zt∆
J
Zt is a positive semi-definite matrix,

D3 ď |
@

∇hpΘtq,∆Zt∆
J
Zt
D

| ď
›

›∇hpΘtq
›

›

op

›

›∆Zt∆
J
Zt

›

›

˚

“
›

›∇hpΘtq
›

›

op
Trp∆Zt∆

J
Ztq ď

›

›∇hpΘtq
›

›

op
}∆Zt}

2
F

“
›

›∇hpΘtq ´∇HpΘtq `∇HpΘtq
›

›

op
}∆Zt}

2
F

ď
›

›∇hpΘtq ´∇HpΘtq
›

›

op
}∆Zt}

2
F `

›

›∇HpΘtq
›

›

op
}∆Zt}

2
F

“ }σpΘ‹q ´A}op }∆Zt}
2
F `

›

›σpΘtq ´ σpΘ‹q
›

›

op
}∆Zt}

2
F

ď
ζn
2
}∆Zt}

2
F ` }σpΘ

tq ´ σpΘ‹q}F}∆Zt}
2
F.
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By the assumption that }∆Zt}F ď
c0

eM1κ2
}Z‹}op,

}σpΘtq ´ σpΘ‹q}F}∆Zt}
2
F ď

c0

eM1κ2
}σpΘtq ´ σpΘ‹q}F}∆Zt}F }Z‹}op

ď c3}σpΘ
tq ´ σpΘ‹q}

2
F `

c0

4c3eM1κ2
}∆Zt}

2
F }Z‹}

2
op .

for any constant c3 to be specified later. Then

D3 ď

˜

ζn

2 }Z‹}
2
op

`
c0

4c3eM1κ2

¸

et ` c3}σpΘ
tq ´ σpΘ‹q}

2
F.

By the assumption that }Z‹}
2
op ě C0κ

2ζne
M1 for sufficiently large constant C0,

D3 ď

ˆ

1

2C0eM1κ2
`

c0

4c3eM1κ2

˙

et ` c3}σpΘ
tq ´ σpΘ‹q}

2
F. (42)

For D4 simple algebra leads to

D4 “ |
@

∇HpΘtq, sGk
D

| “ |
@

σpΘtq ´ σpΘ‹q, sGk
D

| ď }σpΘtq ´ σpΘ‹q}F} sGk}F

ď c4}σpΘ
tq ´ σpΘ‹q}

2
F `

1

4c4
} sGk}

2
F

(43)

for any constant c4 to be specified later.
We now turn to bounding D5. To this end, we upper bound its three terms separately as follows.

First,
}∇hpΘtqZt}2F “ }

`

∇hpΘtq ´∇HpΘtq
˘

Zt `∇HpΘtqZt}2F

ď 2p}p∇hpΘtq ´∇HpΘtqqZt}2F ` }∇HpΘtqZt}2Fq

ď 2p}pσpΘ‹q ´AqZ
t}2F ` }pσpΘ

tq ´ σpΘ‹qqZ
t}2Fq

ď 2p}σpΘ‹q ´A}
2
op}Z

t}2F ` }σpΘ
tq ´ σpΘ‹q}

2
F}Z

t}2opq

ď 2
´ζ2

n

4
}Zt}2F `

›

›Zt
›

›

2

op
}σpΘtq ´ σpΘ‹q}

2
F

¯

.

Next,

}∇hpΘtq1n}
2 “

›

›

`

∇hpΘtq ´∇HpΘtq
˘

1n `∇HpΘtq1n
›

›

2

ď 2
´

›

›

`

∇hpΘtq ´∇HpΘtq
˘

1n
›

›

2
` }∇HpΘtq1n}

2
¯

ď 2
´

}pσpΘ‹q ´Aq1n}
2
`
›

›pσpΘtq ´ σpΘ‹qq1n
›

›

2
¯

ď 2n
´ζ2

n

4
` }σpΘtq ´ σpΘ‹q}

2
F

¯

.

Furthermore,

@

∇HpΘtq, X
D2
“

´

@

∇hpΘtq ´∇HpΘtq, X
D

`
@

∇HpΘtq, X
D

¯2

ď 2
´

@

σpΘ‹q ´A,X
D2
`
@

σpΘtq ´ σpΘ‹q, X
D2
¯

ď 2
´

ζ2
nk}X}

2
F ` }σpΘ

tq ´ σpΘ‹q}
2
F}X}

2
F

¯

.
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When distpZt, Z‹q ď c }Z‹}op, combining these inequalities yields

D5 ď

¨

˝

›

›Zt
›

›

2

op

}Z‹}
2
op

ζ2
nk

2
`
ζ2
n

4
`
ζ2
nk

2

˛

‚`

¨

˝

2
›

›Zt
›

›

2

op

}Z‹}
2
op

`
3

2

˛

‚}σpΘtq ´ σpΘ‹q}
2
F.

By the assumption that }∆Zt}F ď
c0

eM1κ2
}Z‹}op for some sufficiently small c0,

D5 ď C5

`

ζ2
nk ` }σpΘ

tq ´ σpΘ‹q}
2
F

˘

. (44)

Combining (40), (41), (42), (43) and (44), we obtain

ret`1 ď ret ´ η

ˆ

2p
?

2´ 1q

κ2

ˆ

p1´ c1qτ

4τ ` 1
´ c2

˙

´
1

2C0eM1κ2
`

c0

4c3eM1κ2

˙

et ` η

ˆ

C1 `
1

4c4

˙

} sGk}
2
F

´

ˆ

1

τ ` 1{4
´ c3 ´ c4 ´ C5η

˙

}σpΘtq ´ σpΘ‹q}
2
F ` η

C2

4c2
ζ2
nk ` η

2C5ζ
2
nk

where c2, c3, c4 are arbitrary constants, c0 is a sufficiently small constant, and C0 is a sufficiently
large constant. Notice that τ — e´M1 . Choose c2 “ cτ and c, c3, c4, η small enough such that

2p
?

2´ 1q

ˆ

p1´ c1qτ

4τ ` 1
´ c2

˙

´
1

2eM1C0
´

c0

4c3eM1
ą rρe´M1 , and

1

τ ` 1{4
´ c3 ´ c4 ´ C5η ě 0,

for some positive constant rρ. Recall that ret ě p1 ´ δqet. Then there exists a universal constant
C ą 0 such that

ret`1 ď

´

1´
η

eM1κ2
rρp1´ δq

¯

ret ` ηC
`

} sGk}
2
F ` e

M1ζ2
nk

˘

.

The proof is completed by setting ρ “ p1´ δqrρ.

8.2.3 Proof of Lemma 8.7

Note the claim is deterministic in nature and we prove by induction. At initialization we have

}∆Z0}F ď

˜

re0

}Z0}
2
op

¸
1
2

ď

˜

c2
0

4e2M1κ4

}Z‹}
4
op

}Z0}
2
op

¸
1
2

“
c0

2eM1κ2
}Z‹}op

}Z‹}op

}Z0}op

ď
c0

eM1κ2
}Z‹}op ,

where the last inequality is obtained from

›

›Z0
›

›

op
ě }Z‹}op ´ }∆Z0}op ě

´

1´
c0

2eM1κ2

¯

}Z‹}op ě
3

4
}Z‹}op ,

where the second the the last inequalities are due to Assumption 4.2.
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Suppose the claim is true for all t ď t0, by Lemma 8.6,

ret0`1 ď

´

1´
η

eM1κ2
ρ
¯t0

re0 ` ηC
`

} sGk}
2
F ` e

M1ζ2
nk

˘

ď re0 ` ηC
`

} sGk}
2
F ` e

M1ζ2
nk

˘

ď
c2

0

4e2M1κ4
}Z‹}

4
op ` ηC

`

} sGk}
2
F ` e

M1ζ2
nk

˘

“
c2

0

e2M1κ4
}Z‹}

4
op

˜

1

4
` η

Ce2M1ζ2
nκ

4

c2
0 }Z‹}

4
op

ˆ

} sGk}
2
F

ζ2
n

` eM1k

˙

¸

ď
c2

0

e2M1κ4
}Z‹}

4
op

ˆ

1

4
`

C

c2
0C

2
1

˙

.

Choosing C1 large enough such that C2
1 ě

4C
c20

, then

ret0`1 ď
c2

0

2e2M1κ4
}Z‹}

4
op

and therefore,

}∆Zt0`1}F ď

˜

ret0`1

}Z‹}
2
op

¸
1
2

ď
c0

?
2eM1κ2

}Z‹}op

}Z‹}op

}Z0}op

ď
c0

eM1κ2
}Z‹}op .

This completes the proof.

8.3 Additional technique lemmas

We state below additional technical lemmas used in the proofs.

Lemma 8.8 ([21]). Let X1, ¨ ¨ ¨ , Xn be independent Bernoulli random variables with P pXi “ 1q “
pi. For Sn “

řn
i“1 aiXi and ν “

řn
i“1 a

2
i pi. Then we have

P pSn ´ ESn ă ´λq ď expp´λ2{2νq,

P pSn ´ ESn ą λq ď exp

ˆ

´
λ2

2pν ` aλ{3q

˙

,

where a “ maxt|a1|, ¨ ¨ ¨ , |an|u.

Lemma 8.9 ([60]). For any Z1, Z2 P Rnˆk, we have

distpZ1, Z2q
2 ď

1

2p
?

2´ 1qσ2
kpZ1q

}Z1Z
J
1 ´ Z2Z

J
2 }

2
F.

Lemma 8.10 ([60]). For any Z1, Z2 P Rnˆk such that distpZ1, Z2q ď c }Z1}op, we have

}Z1Z
J
1 ´ Z2Z

J
2 }F ď p2` cq }Z1}op distpZ1, Z2q.
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Lemma 8.11 ([50]). For a continuously differentiable function f , if it is µ-strongly convex and
L-smooth on a convex domain D, say for any x, y P D,

µ

2
}x´ y}2 ď fpyq ´ fpxq ´

@

f 1pxq, y ´ x
D

ď
L

2
}x´ y}2,

then
@

f 1pxq ´ f 1pyq, x´ y
D

ě
µL

µ` L
}x´ y}2 `

1

µ` L
}f 1pxq ´ f 1pyq}2,

and also
@

f 1pxq ´ f 1pyq, x´ y
D

ě µ}x´ y}2.

Lemma 8.12 ([45], [26]). Let A be the symmetric adjacency matrix of a random graph on n nodes
in which edges occur independently. Let ErAijs “ Pij for all i ‰ j and Pii P r0, 1s. Assume that
nmaxi,j Pij ď d. Then for any C0, there is a constant C “ CpC0q such that

}A´ P }op ď C
a

d` log n

with probability at least 1´ n´C0.

Lemma 8.13. Let A be the symmetric adjacency matrix of a random graph of n nodes in which
edges occur independently. Let ErAijs “ Pij for all i ‰ j and Pii P r0, 1s for all i and X be
deterministic with Xii “ 0 for all i. Then,

|xA´ P,Xy| ď C}X}F

with probability at least 1´ 2expp´C2{8pmaxq´ expp´C2}X}F{8}X}8q, where pmax “ maxi‰j Pij.

Proof. Observe that xA´P,Xy “ 2
ř

iăjpAij ´PijqXij and Aij are independent Bernoulli random
variables with ErAijs “ Pij . Apply Lemma 8.8 to

ř

iăjpAij ´ PijqXij with λ “ C}X}F{2, we have

ν “
ř

iăj X
2
ijPij ď pmax}X}

2
F and

P
`

|xA´ P,Xy| ď C}X}F
˘

ď expp´C2}X}2F{8νq ` exp

ˆ

´
C2}X}2F

8 max tν, C}X}8}X}Fu

˙

ď 2expp´C2}X}2F{8νq ` expp´C2}X}F{8}X}8q

ď 2expp´C2{8pmaxq ` expp´C2}X}F{8}X}8q.

This completes the proof.

A Proofs of results for initialization

This section presents the proofs of Theorem 4.5, Corollary 4.1 and Proposition 4.1.
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A.1 Preliminaries

We introduce two technical results used repeatedly in the proofs.

Lemma A.1. If }G‹}
2
op ě C} sGk}

2
F for some constant C ą 0, then }G‹}

2
op ě c}G‹}

2
F{k for some

constant c ą 0.

Proof. By definition,

}G‹}
2
F ď 2

`

} sGk}
2
F ` }Z‹Z

J
‹ }

2
F

˘

ď 2} sGk}
2
F ` 2k }Z‹}

4
op ď p2k ` 1{Cq }Z‹}

4
op .

Therefore, }Z‹}
4
op ě c}G‹}

2
F{k for some constant c ą 0.

Theorem A.1. Under Assumption 4.1, choose λn, γn such that

λn ě 2 max

#

}A´ P }op ` γn }G‹}op , }A´ P }op `
γn
?
k
}α‹1n

J}F,

@

A´ P,X
D

?
k}X}F

`
γn
?
k
}Xβ‹}F

+

.

(45)
Let the constant step size η ď 2{9 and the constraint sets CG, Cα and Cβ as specified in Theorem
4.5. If the latent vectors contain strong enough signal in the sense that

}G‹}
2
op ě Cκ6

Z‹e
2M1 max

!

e2M1λ2
nk, }

sGk}
2
˚{k, }

sGk}
2
F

)

(46)

for some sufficiently large constant C, then for any given constant c1 ą 0, there exists a universal
constant C1 such that for any T ě T0, the error will satisfy eT ď c2

1e
´2M1 }Z‹}

4
op {κ

4
Z‹

, where

T0 “ log

˜

C1e
2M1kκ6

Z‹

c2
1

}G‹}
2
F ` 2}α‹1n

J}2F ` }Xβ‹}
2
F

}G‹}2F

¸

ˆ

log

ˆ

1

1´ γnη

˙˙´1

.

Proof. See Section A.5.

A.2 Proof of Theorem 4.5

We focus on the case where X is nonzero, and the case of X “ 0 is simpler. By Lemma 8.3, there
exist constants C2, c such that with probability at least 1´ nc,

}A´ P }op,

@

A´ P,X
D

?
k}X}F

ď C2

b

max tne´M2 , log nu.

All the following analysis is conditional on this event. Since }α‹1n
J}F, }β‹X}F ď C}G‹}F, by

Lemma A.1,
}α‹1n

J}F ` }Xβ‹}F ď C3

?
k }G‹}op .

for some constant C3. Combining these two inequalities leads to

max

#

}A´ P }op ` γn }G‹}op , }A´ P }op `
γn
?
k
}α‹1n

J}F,

@

A´ P,X
D

?
k}X}F

`
γn
?
k
}Xβ‹}F

+

ď C2

b

max tne´M2 , log nu ` p1` C3qγn }G‹}op ď C2{C0λn ` p1` C3qδλn ď λn{2.
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Here the last inequality is due to fact that C0 is sufficiently large and δ is sufficiently small.
Furthermore,

rCκ6
Z‹e

4M1λ2
nk ď

rCc20 }G‹}
2
op ď }G‹}

2
op ,

since c0 is a sufficient small constant. Therefore, the inequality (46) holds. Apply Theorem A.1,
there exists a universal constant C1 such that for any given constant c1 ą 0, eT ď

c2
1e
´2M1 }Z‹}

4
op {κ

4
Z‹

, as long as T ě T0, where

T0 “ log

˜

C1e
2M1kκ6

Z‹

c2
1

}x‹}
2
D

}G‹}2F

¸

ˆ

log

ˆ

1

1´ γnη

˙˙´1

.

Notice that when }α‹1n
J}F, }β‹X}F ď C}G‹}F, }x‹}

2
D ď C4}G‹}

2
F for some constant C4. Therefore,

T0 ď log

˜

C1C4e
2M1kκ6

Z‹

c2
1

¸

ˆ

log

ˆ

1

1´ γnη

˙˙´1

.

This completes the proof.

A.3 Proof of Corollary 4.1

By Lemma 8.3, there exist constants C2, c2 such that with probability at least 1´ nc2 ,

}A´ P }op,

@

A´ P,X
D

?
k}X}F

ď C2

b

max tne´M2 , log nu.

All the following analysis is conditional on this event. Since }α‹1n
J}F, }β‹X}F ď C}G‹}F, by

Lemma A.1,
}α‹1n

J}F ` }Xβ‹}F ď C3

?
k }G‹}op .

for some constant C3. Combining these two inequalities leads to

max

#

}A´ P }op ` γn }G‹}op , }A´ P }op `
γn
?
k
}α‹1n

J}F,

@

A´ P,X
D

?
k}X}F

`
γn
?
k
}Xβ‹}F

+

ď C2

b

max tne´M2 , log nu ` p1` C3qγn }G‹}op

ď C2γn }G‹}op ` p1` C3qγn }G‹}op “ p1` C2 ` C3qγn }G‹}op ,

where the last inequality is due to equation (22). Since we choose λn “ C0γn }Z‹}
2
op for some

sufficiently large constant C0, inequality (45) holds. Further, notice that γn “ γ “ c0{pe
2M1

?
kκ3

Z‹
q

for some sufficiently small constant c0,

rCe4M1κ6
Z‹λ

2
nk “

rCc20 }G‹}
2
op ď }G‹}

2
op .

Therefore, the inequality (46) holds. Apply Theorem A.1, there exists a universal constant C1 such
that for any given constant c1 ą 0, eT ď c2

1e
´2M1 }Z‹}

4
op {κ

4
Z‹

, as long as T ě T0, where

T0 “ log

˜

C1e
2M1kκ6

Z‹

c2
1

}x‹}
2
D

}G‹}2F

¸

ˆ

log

ˆ

1

1´ γη

˙˙´1

.
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Notice that when }α‹1n
J}F, }β‹X}F ď C}G‹}F, }x‹}

2
D ď C4}G‹}

2
F for some constant C4. Therefore,

T0 ď log

˜

C1C4e
2M1kκ6

Z‹

c2
1

¸

ˆ

log

ˆ

1

1´ γη

˙˙´1

.

This completes the proof.

A.4 Proof of Proposition 4.1

Applying Theorem 2.7 in [16] we obtain

1

n2
} pP ´ P }2F ď Cpk,M1, κZ‹qn

´ 1
k`3 .

where the constant Cpk,M1, κZ‹q depends on k,M1, κZ‹ . Notice that Θij “ logitpPijq and logitp¨q
is 4eM1-Lipchitz continuous in the interval

“

1
2e
´M1 , 1

2

‰

, and so

1

n2
}pΘ´Θ}2F ď C 1pk,M1, κZ‹qn

´ 1
k`3 .

Let ∆
pΘ
“ pΘ´Θ‹ It is easy to verify,

α0 “
`

2nIn ` 21n1n
J
˘´1

pΘ1n “ α‹ `
1

n

ˆ

In ´
1

2n
1n1n

J

˙

∆
pΘ
1n,

and hence

}α01n
J ´ α‹1n

J}F “
1

n
}

ˆ

In ´
1

2n
1n1n

J

˙

∆
pΘ
1n1n

J}F

ď
1

n

›

›

›

›

In ´
1

2n
1n1n

J

›

›

›

›

op

}∆
pΘ
}F}1n1n

J}F ď }∆
pΘ
}F.

Notice that G‹ P Sn`,

} pG´G‹}F ď } pG´ J pΘJ ` J pΘJ ´G‹}F ď 2}J pΘJ ´G‹}F ď 2}∆
pΘ
}F.

Further notice that rpG‹q “ k,

}Z0pZ0qJ ´G‹}F ď }Z
0pZ0qJ ´ pG` pG´G‹}F ď 2} pG´G‹}F ď 4}∆

pΘ
}F.

Then, by Lemma 8.9,

e0 ď }Z‹}
2
op distpZ0, Z‹q

2 ` 2n
›

›α0 ´ α‹
›

›

2

ď
κ2
Z‹

2p
?

2´ 1q
}Z0pZ0qJ ´G‹}

2
F ` 2n

›

›α0 ´ α‹
›

›

2
ď 24κ2

Z‹}∆pΘ
}2F ` 2}∆

pΘ
}2F

ď 26κ2
Z‹C

1pk,M1, κZ‹qn
2 ˆ n´

1
k`3 ď

26kκ2
Z‹
C 1pk,M1, κZ‹q

c0

}G‹}
2
F

k
ˆ n´

1
k`3

ď C1pk,M1, κZ‹q }Z‹}
4
op ˆ n

´ 1
k`3 .

Therefore, the initialization condition in Assumption 4.2 will hold for large enough n.
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A.5 Proof of Theorem A.1

A.5.1 Preparations

Recall the definition of fpG,α, βq in (15) where

pG,α, βq P D “
"

pG,α, βq|GJ “ G,G P S`,max
i,j
|Gij |,max

i
|αi| ď

M

3
, |β| ď

M

3 maxi,j |Xij |

*

.

Define the norm } ¨ }D in the domain D by

}pG,α, βq}D “
´

}G}2F ` 2}α1n
J}2F ` }Xβ}

2
F

¯1{2
.

Lemma A.2. The function f is γn-strongly convex and pγn ` 9{2q-smooth in the convex domain
D with respect to the norm } ¨ }D, that is, for pGi, αi, βiq P D, i “ 1, 2, let p∆G,∆α,∆βq “ pG1 ´

G2, α1 ´ α2, β1 ´ β2q, then

γn
2
}p∆G,∆α,∆βq}

2
D ď fpG1, α1, β1q ´ fpG2, α2, β2q ´

@

∇GfpG2, α2, β2q,∆G

D

´
@

∇αfpG2, α2, β2q,∆α

D

´
@

∇βfpG2, α2, β2q,∆β

D

ď
γn ` 9{2

2
}p∆G,∆α,∆βq}

2
D.

Proof. With slight abuse of notation, let

hpG,α, βq “ ´
ÿ

i,j

!

AijΘij ` log
´

1´ σpΘijq

¯)

(47)

which is a convex function of G,α and β. In addition, let

rpG,α, βq “
γn
2

`

}G}2F ` 2}α1n
J}2F ` }Xβ}

2
F

˘

` λn TrpGq (48)

which is γn-strongly convex w.r.t. the norm } ¨ }D. Thus fpG,α, βq is γn-strongly convex. On the
other hand, rp¨, ¨, ¨q is γn smooth and

hpG1, α1, β1q ´ hpG2, α2, β2q ´
@

∇GhpG2, α2, β2q,∆G

D

´
@

∇αhpG2, α2, β2q,∆α

D

´
@

∇βhpG2, α2, β2q,∆β

D

“ hpΘ1q ´ hpΘ2q ´
@

∇ΘhpΘ2q,∆G

D

´
@

2∇ΘhpΘ2q1n,∆α

D

´
@

∇ΘhpΘ2q, X
D

∆β

“
1

2
hpΘ1q ´ hpΘ2q ´

@

∇ΘhpΘ2q,Θ1 ´Θ2

D

ď
1

8
}Θ1 ´Θ2}

2
F “

1

8
}∆G ` 2∆α1n

J `X∆β}
2
F

ď
9

8

`

}∆G}
2
F ` 4}∆α1n

J}2F ` }X∆β}
2
F

˘

ď
9

4

`

}∆G}
2
F ` 2}∆α1n

J}2F ` }X∆β}
2
F

˘

.

This finishes the proof.
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Define p rG, rα, rβq “ arg minpG,α,βqPD fpG,α, βq, ∆
rG
“ rG´G‹,∆

rα “ rα´α‹,∆
rβ
“ rβ´β‹,∆

rΘ
“

rΘ ´ Θ‹. Similar to the analysis of the convex programming in (11), one can obtain the following
results.

Lemma A.3. Let MK
k “ tM P Rnˆn : rowpMq Ă colpZ‹q

K and colpMq Ă colpZ‹q
Ku and Mk be

its orthogonal complement in Rnˆn under trace inner product. If

λn ě 2 max

#

}A´ P }op ` γn }G‹}op , }A´ P }op `
γn
?
k
}α‹1n

J}F,

@

A´ P,X
D

?
k}X}F

`
γn
?
k
}Xβ‹}F

+

,

then for sGk “ PMK
k
G‹, we have

}∆
rG
}˚ ď 4

?
2k}PMk

∆
rG
}F ` 2

?
k}∆

rα1n
J}F `

?
k}X∆

rβ
}F ` 4} sGk}˚ .

Proof. Let

rhpG,α, βq “ ´
ÿ

1ďi,jďn

tAijΘij ` logp1´ σpΘijqqu `
γn
2

`

}G}2F ` 2}α1n
J}2F ` }Xβ}

2
F

˘

.

By the convexity of rh,

rhp rG, rα, rβq ´ rhpG‹, α‹, β‹q

ě
@

∇G
rhpG‹, α‹, β‹q,∆

rG

D

`
@

∇α
rhpG‹, α‹, β‹q,∆

rα

D

`
@

∇β
rhpG‹, α‹, β‹q,∆

rβ

D

“ ´xA´ P, ∆
rG
` 2∆

rα1n
J `∆

rβ
Xy ` γn

´

@

G‹,∆
rG

D

` 2n
@

α‹,∆
rα

D

` }X}2F
@

β‹,∆
rβ

D

¯

ě ´}A´ P }op

`

}∆
rG
}˚ ` 2}∆

rα1n
J}˚

˘

´ |xA´ P,∆
rβ
Xy|

´ γn

´

}G‹}op }G‹}˚ ` 2}α‹1n
J}F}∆

rα1n
J}F ` }Xβ‹}F}X∆

rβ
}F

¯

ě ´

´

}A´ P }op ` γn }G‹}op

¯

›

›∆
rG

›

›

˚
´

´

}A´ P }op ` γn{
?
k}α‹1n

J}F

¯

2
?
k}∆

rα1n
J}F

´

´

@

A´ P,X
D

{

´?
k}X}F

¯

` γn{
?
k}Xβ‹}F

¯?
k}X∆

rβ
}F

ě ´
λn
2

` ›

›∆
rG

›

›

˚
` 2
?
k}∆

rα1n
J}F `

?
k}X∆

rβ
}F
˘

ě ´
λn
2

`

}PMk
∆

rG
}˚ ` }PMK

k
∆

rG
}˚ ` 2

?
k}∆

rα1n
J}F `

?
k}X∆

rβ
}F
˘

.

The last inequality holds since PMk
` PMK

k
equals identity and

λn ě 2 max

#

}A´ P }op ` γn }G‹}op , }A´ P }op `
γn
?
k
}α‹1n

J}F,

@

A´ P,X
D

?
k}X}F

`
γn
?
k
}Xβ‹}F

+

.

On the other hand, by the definition of sGk,

} rG}˚ ´ }G‹}˚ “ }PMk
G‹ ` sGk ` PMk

∆
rG
` PMK

k
∆

rG
}˚ ´ }PMk

G‹ ` sGk}˚

ě }PMk
G‹ ` PMK

k
∆

rG
}˚ ´ } sGk}˚ ´ }PMk

∆
rG
}˚ ´ }PMk

G‹}˚ ´ } sGk}˚

“ }PMk
G‹}˚ ` }PMK

k
∆

rG
}˚ ´ 2} sGk}˚ ´ }PMk

∆
rG
}˚ ´ }PMk

G‹}˚

“ }PMK
k

∆
rG
}˚ ´ }PMk

∆
rG
}˚ ´ 2} sGk}˚ .
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Here, the second last equality holds since PMk
G‹ and PMK

k
∆

rG
have orthogonal column and row

spaces. Furthermore, since pΘ is the optimal solution to (11), and Θ‹ is feasible, the basic inequality
and the last two displays imply

0 ě rhp rG, rα, rβq ´ rhpG‹, α‹, β‹q ` λn
`

} rG}˚ ´ }G‹}˚
˘

ě ´
λn
2

`

}PMk
∆

rG
}˚ ` }PMK

k
∆

rG
}˚ ` 2

?
k}∆

rα1n
J}F `

?
k}X∆

rβ
}F
˘

` λn
`

}PMK
k

∆
rG
}˚ ´ }PMk

∆
rG
}˚ ´ 2} sGk}˚

˘

“
λn
2

`

}PMK
k

∆
rG
}˚ ´ 3}PMk

∆
rG
}˚ ´ 4} sGk}˚ ´ 2

?
k}∆

rα1n
J}F ´

?
k}X∆

rβ
}F
˘

.

Rearranging the terms leads to

}PMK
k

∆
rG
}˚ ď 3}PMk

∆
rG
}˚ ` 2

?
k}∆

rα1n
J}F `

?
k}X∆

rβ
}F ` 4} sGk}˚ ,

and triangle inequality further implies

}∆
rG
}˚ ď 4}PMk

∆
rG
}˚ ` 2

?
k}∆

rα1n
J}F `

?
k}X∆

rβ
}F ` 4} sGk}˚ .

Finally, note that the rank of PMk
∆

rG
is at most 2k,

}∆
rG
}˚ ď 4

?
2k}PMk

∆
rG
}F ` 2

?
k}∆

rα1n
J}F `

?
k}X∆

rβ
}F ` 4} sGk}˚ .

This completes the proof.

Lemma A.4. For any k ě 1 such that Assumption 4.1 holds. Choose λn ě maxt2}A ´ P }op, 1u
and |xA´ P,Xy| ď λn

?
k}X}F. There exist constants C ą 0 and 0 ď c ă 1 such that

}∆
rΘ
}2F ě p1´ cq

`

}∆
rG
}2F ` 2}∆

rα1n
J}2F ` }∆rβ

X}2F
˘

´ C} sGk}
2
˚{k, and

}∆
rΘ
}2F ď p1` cq

`

}∆
rG
}2F ` 2}∆

rα1n
J}2F ` }∆rβ

X}2F
˘

` C} sGk}
2
˚{k.

Proof. The proof is the same as the proof of Lemma 8.2 and we leave out the details.

Theorem A.2. Under Assumption 4.1, for any λn satisfying

λn ě 2 max

#

}A´ P }op ` γn }G‹}op , }A´ P }op `
γn
?
k
}α‹1n

J}F,

@

A´ P,X
D

?
k}X}F

`
γn
?
k
}Xβ‹}F

+

,

there exists a constant C such that

´

}∆
rG
}F ` 2}∆

rα1n
J}F ` }∆

rβ
X}F

¯2
ď C

ˆ

e2M1λ2
nk `

} sGk}
2
˚

k

˙

.

Proof. Recall the definition of hpG,α, βq in (47). Observe that pΘ “ pα1n
J ` 1npα

J ` pβX ` pG is the
optimal solution to (11), and that the true parameter Θ‹ “ α‹1n

J ` 1nα
J
‹ ` β‹X `G‹ is feasible.

Thus, we have the basic inequality

rhp rG, rα, rβq ´ rhpG‹, α‹, β‹q ` λnp} rG}˚ ´ }G‹}˚q ď 0. (49)
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By definition,
rhpG,α, βq “ hpG,α, βq `

γn
2

`

}G}2F ` }α1n
J}22 ` }Xβ}

2
F

˘

.

On the one hand,

hp rG, rα, rβq ´ hpG‹, α‹, β‹q

´
@

∇GhpG‹, α‹, β‹q,∆
rG

D

´
@

∇αhpG‹, α‹, β‹q,∆
rα

D

´
@

∇βhpG‹, α‹, β‹q,∆rβ

D

“ hprΘq ´ hpΘ‹q ´
@

∇ΘhpΘ‹q,∆
rΘ

D

ě
τ

2
}∆

rΘ
}2F,

where the last inequality is by the strong convexity of hp¨q with respect to Θ in the domain Fg and
τ “ eM1{p1` eM1q2 as in the proof of Theorem 4.1. Further by Lemma A.4,

τ

2
}∆

rΘ
}2F ě

τp1´ cq

2

`

}∆
rG
}2F ` 2}∆

rα1n
J}2F ` }∆rβ

X}2F
˘

´
Cτ

2
} sGk}

2
˚{k.

On the other hand, the l2 regularization term is strongly convex with respect to pG,α, βq. Then
we have

rhp rG, rα, rβq ´ rhpG‹, α‹, β‹q

ě
@

∇G
rhpG‹, α‹, β‹q,∆

rG

D

`
@

∇α
rhpG‹, α‹, β‹q,∆

rα

D

`
@

∇β
rhpG‹, α‹, β‹q,∆

rβ

D

`
τp1´ cq

2

`

}∆
rG
}2F ` 2}∆

rα1n
J}2F ` }∆rβ

X}2F
˘

´
Cτ

2
} sGk}

2
˚{k

ě ´
λn
2

` ›

›∆
rG

›

›

˚
` 2
?
k}∆

rα1n
J}F `

?
k}X∆

rβ
}F
˘

`
τp1´ cq

2

`

}∆
rG
}2F ` 2}∆

rα1n
J}2F ` }∆rβ

X}2F
˘

´
Cτ

2
} sGk}

2
˚{k.

By triangle inequality,
λnp} pG}˚ ´ }G‹}˚q ě ´λn}∆G}˚.

Together with (49), the last two inequalities imply

τp1´ cq

2

´

}∆
rG
}2F ` 2}∆

rα1n
J}2F ` }∆rβ

X}2F

¯

ď
λn
2

´

›

›∆
rG

›

›

˚
` 2
?
k}∆

rα1n
J}F `

?
k}X∆

rβ
}F

¯

` λn}∆
rG
}˚ `

Cτ

2
} sGk}

2
˚{k.

By Lemma A.3,

τp1´ cq

2

´

}∆
rG
}2F ` 2}∆

rα1n
J}2F ` }∆rβ

X}2F

¯

ď C0λn
?
k
´

}∆
rG
}F ` 2}∆

rα1n
J}F ` }X∆

rβ
}F

¯

` C1λn} sGk}˚ `
Cτ

2
} sGk}

2
˚{k.

This implies that there exists some constant c0 such that

c0τ
´

}∆
rG
}F ` 2}∆

rα1n
J}F ` }∆

rβ
X}F

¯2

ď C0λn
?
k
´

}∆
rG
}F ` 2}∆

rα1n
J}F ` }X∆

rβ
}F

¯

` C1λn} sGk}˚ `
Cτ

2
} sGk}

2
˚{k.

50



Solving the quadratic inequality, there exists some constant C2 such that

´

}∆
rG
}F ` 2}∆

rα1n
J}F ` }∆

rβ
X}F

¯2
ď C2

ˆ

λ2
nk

τ2
`
λn} sGk}˚

τ
`
} sGk}

2
˚

k

˙

.

Note that τ ě c1e
´M1 and eM1λn} sGk}˚ ď c2

´

e2M1λ2
nk `

} sGk}
2
˚

k

¯

for positive constants c1, c2.

Therefore,
´

}∆
rG
}F ` 2}∆

rα1n
J}F ` }∆

rβ
X}F

¯2
ď C2

ˆ

e2M1λ2
nk `

} sGk}
2
˚

k

˙

,

which completes the proof.

Lemma A.5 ([10]). Let x P D and y P Rn, then

@

πDpyq ´ x, πDpyq ´ y
D

ď 0

where D is a convex set and πDpxq “ arg minyPD }x´ y}.

Lemma A.6. With ηG “ η, ηα “ η{2n, ηβ “ η{}X}2F,

@

Gt ´Gt`1, Gt ´ rG
D

` 2n
@

αt ´ αt`1, αt ´ rα
D

`
@

βt ´ βt`1, βt ´ rβ
D

}X}2F

ě
ηµ

2
}xt ´ rx}2D `

ˆ

1´
ηL

2

˙

!

}Gt`1 ´Gt}2F ` 2}
`

αt`1 ´ αt
˘

1n
J}2F ` }pβ

t`1 ´ βtqX}2F

)

where µ “ γn and L “ γn ` 9{2.

Proof. Let xt “ pGt, αt, βtq and rx “ p rG, rα, rβq. Then

fpxt`1q ´ fprxq “ fpxt`1q ´ fpxtq ` fpxtq ´ fprxq

ď
@

∇fpxtq, xt`1 ´ xt
D

`
L

2
}xt`1 ´ xt}2D `

@

∇fpxtq, xt ´ rx
D

´
µ

2
}xt ´ rx}2D

ď
@

∇fpxtq, xt`1 ´ rx
D

`
L

2
}xt`1 ´ xt}2D ´

µ

2
}xt ´ rx}2D

“
@

∇GfpG
t, αt, βtq, Gt`1 ´ rG

D

`
@

∇αfpG
t, αt, βtq, αt`1 ´ rα

D

`
@

∇βfpG
t, αt, βtq, βt`1 ´ rβ

D

`
L

2
}xt`1 ´ xt}2D ´

µ

2
}xt ´ rx}2D.

Notice that rGt`1 “ Gt´ ηG
Bf
BG |G“Gt and Gt`1 is the projection of rGt`1 to the convex set tG|GJ “

G,G P S`,maxi,j }Gij} ďM1u. Therefore by Lemma A.5,

@

Gt`1 ´ rGt`1, Gt`1 ´ rG
D

ď 0

which implies that

@ Bf

BG
|G“Gt , G

t`1 ´ rG
D

ď
1

ηG

@

Gt ´Gt`1, Gt`1 ´ rG
D

“
1

ηG

@

Gt ´Gt`1, Gt ´ rG
D

´
1

ηG
}Gt ´Gt`1}2F.
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Similar argument will yield

@Bf

Bα
|α“αt`1 , αt`1 ´ rα

D

ď
1

ηα

@

αt ´ αt`1, αt ´ rα
D

´
1

ηα
}αt ´ αt`1}2,

@Bf

Bβ
|β“βt`1 , βt`1 ´ rβ

D

ď
1

ηβ

@

βt ´ βt`1, βt ´ rβ
D

´
1

ηβ
}βt ´ βt`1}2.

Also notice that fpxt`1q ´ fprxq ě 0, therefore

0 ď ηpfpxt`1q ´ fprxqq ď
@

Gt ´Gt`1, Gt ´ rG
D

` 2n
@

αt ´ αt`1, αt ´ rα
D

` }X}2F
@

βt ´ βt`1
D

´ }xt ´ xt`1}2D `
ηL

2
}xt ´ xt`1}2D ´

ηµ

2
}xt ´ rx}2D.

This completes the proof.

A.5.2 Proof of the theorem

Let xt “ pGt, αt, βtq, rx “ p rG, rα, rβq. By definition,

}xt`1 ´ rx}2D “ }G
t`1 ´ rG}2F ` 2}

`

αt`1 ´ αt
˘

1n
J}2F ` }pβ

t`1 ´ rβqX}2F.

Notice that for each component, the error can be decomposed as (with G as an example),

}Gt`1 ´ rG}2F “ }G
t ´ rG}2F ´ 2

@

Gt ´Gt`1, Gt ´ rG
D

` }Gt`1 ´Gt}2F.

Summing up these equations leads to

}xt`1 ´ rx}2D “ }x
t ´ rx}2D

´ 2
!

@

Gt ´Gt`1, Gt ´ rG
D

` 2n
@

αt ´ αt`1, αt ´ rα
D

` }X}2F
@

βt ´ βt`1, βt ´ rβ
D

)

`

!

}Gt`1 ´Gt}2F ` 2}
`

αt`1 ´ αt
˘

1n
J}2F ` }pβ

t`1 ´ βtqX}2F

)

.

By Lemma A.6,

}xt`1 ´ rx}2D ď p1´ ηµq}x
t ´ rx}2D ´ p1´ ηLq}x

t ´ xt`1}2D.

Then for any η ď 1{L,
}xt`1 ´ rx}2D ď p1´ ηµq}x

t ´ rx}2D.

By Lemma 8.5, and repeatedly using the inequality pa` bq2 ď 2pa2 ` b2q,

et ď
κ2
Z‹

2p
?

2´ 1q
}ZtpZtqJ ´ Z‹Z

J
‹ }

2
F ` 2}∆αt1n

J}2F ` }∆βtX}
2
F

ď
κ2
Z‹

p
?

2´ 1q

`

}ZtpZtqJ ´Gt}2F ` }G
t ´ Z‹Z

J
‹ }

2
F

˘

` 2}∆αt1n
J}2F ` }∆βtX}

2
F

ď
2κ2

Z‹

p
?

2´ 1q
}Gt ´ Z‹Z

J
‹ }

2
F ` 2}∆αt1n

J}2F ` }∆βtX}
2
F

ď
4κ2

Z‹

p
?

2´ 1q

`

}Gt ´G‹}
2
F ` }G‹ ´ Z‹Z

J
‹ }

2
F

˘

` 2}∆αt1n
J}2F ` }∆βtX}

2
F

ď
4κ2

Z‹

p
?

2´ 1q
}Gt ´G‹}

2
F `

4κ2
Z‹

p
?

2´ 1q
} sGk}

2
F ` 2}∆αt1n

J}2F ` }∆βtX}
2
F.
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By the definition of } ¨ }D, we further have

et ď
4κ2

Z‹

p
?

2´ 1q

`

}xt ´ x‹}
2
D ` }

sGk}
2
F

˘

ď
4κ2

Z‹

p
?

2´ 1q

`

2}xt ´ rx}2D ` 2}rx´ x‹}
2
D ` }

sGk}
2
F

˘

ď
4κ2

Z‹

p
?

2´ 1q

`

2p1´ ηγnq
t}x0 ´ rx}2D ` 2}rx´ x‹}

2
D ` }

sGk}
2
F

˘

ď
4κ2

Z‹

p
?

2´ 1q

`

4p1´ ηγnq
t}x0 ´ x‹}

2
D ` 4p1´ ηγnq

t}rx´ x‹}
2
D ` 2}rx´ x‹}

2
D ` }

sGk}
2
F

˘

.

According to Theorem A.2, there exists constant C0 ą 0 such that

}rx´ x‹}
2
D ď C0

ˆ

e2M1λ2
nk `

} sGk}
2
˚

k

˙

.

Therefore, et ď C1κ
2
Z‹

`

p1´ ηγnq
t}x0 ´ x‹}

2
D ` e

2M1λ2
nk ` }

sGk}
2
˚{k ` }

sGk}
2
F

˘

. Since x0 “ 0,

et ď C1κ
2
Z‹

`

p1´ ηγnq
t}x‹}

2
D ` e

2M1λ2
nk ` }

sGk}
2
˚{k ` }

sGk}
2
F

˘

ď
c2

1

κ4
Z‹
e2M1

}Z‹}
4
op ˆ

C1κ
6
Z‹
e2M1

c2
1 }Z‹}

4
op

`

p1´ ηγnq
t}x‹}

2
D ` e

2M1λ2
nk ` }

sGk}
2
˚{k ` }

sGk}
2
F

˘

.

Under our assumptions, there exists some sufficiently large constant C2 such that

}Z‹}
4
op ě C2κ

6
Z‹e

2M1 max
!

e2M1λ2
nk, }

sGk}
2
˚{k, }

sGk}
2
F

)

.

Therefore,

et ď
c2

1

κ4
Z‹
e2M1

}Z‹}
4
op ˆ

˜

C1e
2M1κ6

Z‹
}Θ‹}

2
F

c2
1τ

2 }Z‹}
4
op

p1´ ηγnq
t `

3C1

c2
1C2

¸

.

Choose large enough C2 ą 6C1{c
2
1, then

et ď
c2

1

κ4
Z‹
e2M1

}Z‹}
4
op ˆ

˜

Ce2M1κ6
Z‹
}x‹}

2
D

c2
1 }Z‹}

4
op

p1´ ηγnq
t `

1

2

¸

.

Therefore, et ď
c21τ

2

κ4
}Z‹}

4
op when

C1e
2M1κ6

Z‹
}x‹}

2
D

c2
1 }G‹}

2
op

p1´ ηγnq
t ď

1

2
.

By Lemma A.1, }G‹}
2
op ě c}G‹}

2
F{k. Therefore, it suffices to have

t ě log

˜

k
}x‹}

2
D

}G‹}2F

2C1e
2M1κ6

Z‹

c2
1c

¸

ˆ

log

ˆ

1

1´ ηγn

˙˙´1

.

This completes the proof.
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B A Method for multiple edge covariates

In this appendix, we discuss the issue of fitting an inner-product model with multiple edge
covariates.

B.1 Method

Suppose there are p different covariates, then one can extend model (1) to

Aij “ Aji
ind.
„ BernoullipPijq, with

logitpPijq “ Θij “ αi ` αj `

p
ÿ

`“1

β`X
p`q
ij ` z

J
i zj ,

where for ` “ 1, . . . , p, the n ˆ n symmetric matrix Xp`q “ pX
p`q
ij q collects the observed values of

the `-th edge covariate, and β “ pβ1, ¨ ¨ ¨ , βpq
T are the coefficients. For fixed tuning parameters λGn

and λXn , our model fitting scheme solves the following convex program:

min
α,β,G

´
ÿ

i,j

!

AijΘij ` log
´

1´ σpΘijq

¯)

` λGn TrpGq ` λXn

p
ÿ

`“1

|β`|

subject to Θ “ α1n
J ` 1nα

J `

p
ÿ

`“1

β`X
p`q `G, GJ “ G, G P Sn`, ´M1 ď Θij ď ´M2.

(50)

We propose an algorithm below which combines projected gradient descent and proximal
gradient methods to solve (50).

Algorithm 4 A convex projected descent method for fitting model with multiple covariates.

1: Input: Adjacency matrix: A; covariate matrices: Xp1q, . . . , Xppq; latent space dimension: k ě
1; tuning parameters: λGn , λ

X
n ; initial estimates: G0, α0, β0; step sizes: ηG, ηα, ηβ; constraint

sets: CG, Cα, Cβ.

Output: pG “ GT , pα “ αT , pβ “ βT .
2: for t “ 0, 1, ¨ ¨ ¨ , T ´ 1 do
3: rGt`1 “ Gt ´ ηG∇GgpG,α, βq “ Gt ` 2ηG

`

A´ σpΘtq ´ λGn In
˘

;
4: rαt`1 “ αt ´ ηα∇αgpG,α, βq “ αt ` 2ηαpA´ σpΘ

tqq1n;
5: rβt`1

` “ βt` ` ηβd
t
`, where dt` “

@

A´ σpΘtq, Xp`q
D

, for 1 ď ` ď p;

6: Gt`1 “ PCGp rGt`1q, αt`1 “ PCαprαt`1q, βt`1
` “ Sηβ ¨λXn p

rβt`1
` q for 1 ď ` ď p;

7: end for

In Step 6, Sδpzq “ 1t|z|ąδupz ´ signpzqδq represents the soft-thresholding operator. Note that
the β-updates in steps 5 and 6 replicates the proximal gradient method for lasso [9]. Furthermore,
we propose the following step sizes:

ηG “ η, ηα “ η{n, and ηβ “ max
1ď`ďp

pη{}Xp`q}2Fq (51)

for some constant η ą 0.
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Tuning parameter selection To choose the optimal tuning parameters λGn and λXn , we suggest
network cross-validation [51, 17] on a grid of these parameters. In particular, for a certain pair
pλGn , λ

X
n q on the grid, we repeatedly partition the n nodes into I1 and I2 with |I1| “ tn{2u and

|I2| “ n ´ tn{2u. The edges tpi, jq : i P I1 or j P I1u are used for fitting the model (so that
there are still n nodes, but the negative log-likelihood function only includes edges in this set),
and the edges tpi, jq : i P I2 and j P I2u are used for testing. The optimal pair of tuning
parameter is chosen so that the average mis-classification error for the testing edges over B random
partitions is minimized. We recommend using a grid on the log scale around the center pλ̄Gn , λ̄

X
n q “

p2
a

npp, npn ´ 1q
a

log n{nq, where pp “
ř

ij Aij{n
2 is the average of all A’s components. This

validation scheme could help us choose good tuning parameters pλGn and pλXn , as well as the covariates
to include in our model. To avoid bias in estimating the β’s, we may re-fit a model with the chosen
pλGn and the included covariates, but without the L1-penalty for the β’s.

For a model without any covariate, there is a similar validation scheme to the one described
in the preceding paragraph for choosing the optimal λGn . Specifically, for a fixed λGn , Algorithm 4
applied by removing Step 5 and the β-update in Step 6, and the optimal λGn is one that minimizes
the average testing mis-classification error over B random partitions in a λGn sequence.

B.2 The lawyer data example

We now revisit the lawyer data example in Section 6.2. We label attributes practice, gender, office,

and school as node covariate 1 to 4. Then we set edge covariate X
p`q
ij “ X

p`q
ji “ 1 if i ‰ j and the ith

and the jth lawyers shared the same `th node covariate, and X
p`q
ij “ X

p`q
ji “ 0 otherwise. Applying

Algorithm 4 with the aforementioned turning parameter selection scheme suggests that the first
three covariates, i.e., indicators for attributes practice, gender, and office, should be included in
the model. The resulting number of misclustered nodes is 9, a 25% improvement compared to the
previously reported 12 misclustered nodes when not using any covariate. This error rate is slightly
worse than including a single handpicked covariate, indicator for practice, but it enjoys the merit
of not having to manually choose the covariates or tune the parameters. Finally, we also note that
the error rate does not change if one use latent vectors derived from all non-zero eigenvalues of the
fitted pG.
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