|
| |
Research
Some Preprints
-
Lu, Y., Enninful, A., Bao, S., Bai, Z., Xu, M. L., Xiao, Y.*, Fan, R.*, and Ma, Z.* (2025)
SuperFocus enables whole-slide cell-level spatial omics from spot-based measurements and histology across modalities.
biorxiv:10.64898/2025.12.26.696575.
-
Cao, Y. and Ma, Z. (2025)
MoDaH achieves rate optimal batch correction.
arXiv:2512.09259.
[Data & Code]
-
Gui, Y., Ma, C., and Ma, Z. (2025)
IndiSeek learns information-guided disentangled representations.
arXiv:2509.21584.
-
Li, Y.#, Zhang, Z.#, Enninful, A.#, Nam, J., Rajbhandari, P., Tian, H., Nam, J., Qin, X., Villazon, J., Fung, A. A., Jang, H., Bai, Z., Zhang, N. R., Stockwell, B. R., Fan, R.*, Xu, M. L.*, Ma, Z.*, and Shi, L.* (2024)
All-optical multimodal mapping of single cell type-specific metabolic activities via REDCAT.
biorxiv:10.1101/2024.11.07.622511.
-
Nandy, S. and Ma, Z. (2024)
Multimodal data integration and cross-modal querying via orchestrated approximate message passing.
arXiv:2407.19030.
[Code]
Journal and Refereed Conference Publications
-
Enninful, A.#, Zhang, Z.#, Klymyshyn, D., Ingalls, M., Yang, M., Zong, H., Bai, Z., Farzad, N., Su, G., Baysoy, A., Nam, J., Lu, Y., Bao, S., Deng, S., Zhang, N. R., Braubach, O., Xu, M. L.*, Ma, Z.*, and Fan, R.* (2026)
Integration of imaging-based and sequencing-based spatial omics mapping on the same tissue section via DBiTplus.
Nature Methods.
-
Gui, Y., Ma, C., and Ma, Z. (2025)
Multi-modal contrastive learning adapts to intrinsic dimensions of shared latent variables.
NeurIPS.
-
Zhu, B.#, Gao, S.#, Chen, S.#, Wang, Y., Yeung, J., Bai, Y., Huang, A. Y., Yeo, Y. Y., Liao, G., Mao, S., Jiang, Z., Rodig, S. J., Wong, K.-C., Shalek, A. K., Nolan, G. P.*, Jiang, S.*, and Ma, Z.* (2025)
CellLENS enables cross-domain information fusion for enhanced cell population delineation in single-cell spatial omics data.
Nature Immunology,
Vol.26, pp.963-974.
[CellLENS Python Package]
-
Zhang, Z., Mathew, D., Lim, T., Mason, K., Martinez, C. M., Huang, S., Wherry, E. J., Susztak, K., Minn, A. J., Ma, Z.*, and Zhang, N. R.* (2025)
Recovery of biological signals lost in single-cell batch integration with CellANOVA.
Nature Biotechnology,
Vol.43, pp.1861–1877.
[CellANOVA Python Package]
-
Chen, S.#, Zhu, B.#, Huang, S., Hickey, J., Lin, K., Snyder, M., Greenleaf, W., Nolan, G. P.*, Zhang, N. R.*, and Ma, Z.* (2024)
Integration of spatial and single-cell data across modalities with weakly linked features.
Nature Biotechnology,
Vol.42, pp.1096-1106.
[MaxFuse Python Package]
[Documentation]
-
Hickey, J. W., et al. (2023)
Organization of the human intestine at single cell resolution.
Nature, Vol.619, pp.572-584.
-
Ma, Z. and Nandy, S. (2023)
Community detection with contextual multilayer networks.
IEEE Transactions on Information Theory,
Vol.46(5), pp.3203-3239.
-
Gao, S. and Ma, Z. (2023)
Sparse GCA and thresholded gradient descent.
Journal of Machine Learning Research,
Vol.24(135), pp.1−61.
-
Ma, Z. and Yang, F. (2023)
Sample canonical correlation coefficients of high-dimensional random vectors with finite rank correlations.
Bernoulli, Vol.29(3), 1905-1932.
-
Zhu, B.#, Chen, S.#, Bai, Y., Chen, H., Liao, G., Mukherjee, N., Vazquez, G., McIlwain, D. R., Tzankov, A., Lee, I. T., Matter, M. S., Goltsev, Y., Ma, Z.*, Nolan, G. P.*, and Jiang, S.* (2023)
Robust single-cell matching and multi-modal analysis using shared and distinct features.
Nature Methods, Vol.20, pp.304-315.
[MARIO Python Package]
-
Gao, F., Ma, Z. and Yuan, H. (2022)
Community detection in sparse latent space models.
Journal of Machine Learning Research,
Vol.23(322), pp.1-50.
-
Chen, S., Liu, S. and Ma, Z. (2022)
Global and individualized community detection in inhomogeneous multilayer networks.
Annals of Statistics,
Vol.50(5), pp.2664-2693.
-
Banerjee, D. and Ma, Z. (2022)
Optimal signal detection in some spiked random matrix models: Likelihood ratio tests and linear spectral statistics.
Annals of Statistics, Vol.50(4), pp.1910-1932.
-
Chen, X., Li, X., and Ma, Z. (2022)
Nonconvex matrix completion with linearly parameterized factors.
Journal of Machine Learning Research, Vol.23(207), pp.1-35.
-
Gao, C. and Ma, Z. (2022)
Testing equivalence of clustering.
Annals of Statistics, Vol.50(1), pp.407-429.
-
Ding, J., Ma, Z., Wu, Y. and Xu, J. (2021)
Efficient random graph matching via degree profiles.
Probability Theory and Related Fields,
Vol.179, pp.29-115.
-
Ma, Z., Ma, Z. and Yuan, H. (2020)
Universal latent space model fitting for large networks with edge covariates.
Journal of Machine Learning Research, Vol.21(4), pp.1-67.
-
Ma, Z., Ma, Z. and Sun, T. (2020)
Adaptive estimation in two-way sparse reduced-rank regression.
Statistica Sinica,
Vol.30, pp.2179-2201.
-
Xia, C. H., Ma, Z., Cui, Z., Bzdok, D., Basset, D. S., Satterthwaite, T. D., Shinohara, R. T., Witten D. (2020)
Multi-scale network regression for brain--phenotype associations.
Human Brain Mapping, Vol.41(10), pp.2553-2566.
-
Gao, C., Ma, Z., Zhang, A. Y., and Zhou, H. H. (2018)
Community detection in degree-corrected block models.
Annals of Statistics, Vol.46(5), pp.2153–2185.
-
Xia, C. H., Ma, Z., Ciric, R., Gu, S., Betzel, R., Kaczkurkin, A., Calkins, M., Cook, P., de la Garza, A. G., Vandekar, S., Cui, Z., Moore, T., Roalf, D., Ruparel, K., Wolf, D., Davatzikos, C., Gur, R., Gur, R., Shinohara, R., Bassett, D., and Satterthwaite, T. (2018)
Linked dimensions of psychopathology and connectivity in functional brain networks.
Nature Communications,
Vol.9, Article number:3003.
-
Gao, C., Ma, Z., and Zhou, H. H. (2017)
Sparse CCA: Adaptive estimation and computational barriers.
Annals of Statistics, Vol.45(5), pp.2074–2101.
[Matlab Code]
-
Kennedy, E. H., Ma, Z., McHugh, M. D., and Small, D. S. (2017)
Nonparametric methods for doubly robust estimation of continuous treatment effects.
Journal of the Royal Statistical Society, Series B
Vol.79(4), pp.1229-1245.
-
Gao, C., Ma, Z., Zhang, A. Y., and Zhou, H. H. (2017)
Achieving optimal misclassification proportion in stochastic block models.
Journal of Machine Learning Research, Vol.18(60), pp.1-45.
-
Gao, C., Lu, Y., Ma, Z., and Zhou, H. H. (2016)
Optimal estimation and completion of matrices with
biclustering structures.
Journal of Machine Learning Research, Vol.17(161), pp.1-29.
-
Cai, T. T., Li, X., and Ma, Z. (2016)
Optimal rates of convergence for noisy sparse phase retrieval via thresholded Wirtinger flow.
Annals of Statistics, Vol.44(5), pp.2221-2251.
-
Yang, D., Ma, Z., and Buja, A. (2016)
Rate optimal denoising of simultaneously sparse and low rank matrices.
Journal of Machine Learning Research, Vol.17(92), pp.1-27.
-
Ma, Z. and Wu, Y. (2015)
Volume ratio, sparsity, and minimaxity under unitarily invariant norms.
IEEE Transactions on Information Theory, Vol.61(12), pp.6939-6956.
-
Gao, C., Ma, Z., Ren, Z., and Zhou, H. H. (2015)
Minimax estimation in sparse canonical correlation analysis.
Annals of Statistics, Vol.43(5), pp.2168-2197.
-
Ma, Z. and Wu, Y. (2015)
Computational barriers in minimax submatrix detection.
Annals of Statistics, Vol.43(3), pp.1089-1116.
-
Cai, T. T., Ma, Z., and Wu, Y. (2015)
Optimal estimation and rank detection for sparse spiked covariance matrices.
Probability Theory and Related Fields, Vol.161(3), pp.781-815.
-
Yang, D., Ma, Z., and Buja, A. (2014)
A sparse SVD method for
high-dimensional data.
Journal of Computational and Graphical Statistics, Vol.23(4), pp.923-942.
-
Cai, T. T., Low, M., and Ma, Z. (2014)
Adaptive confidence bands for nonparametric regression functions.
Journal of the American Statistical Association, Vol.109, Issue 507, pp.1054-1070.
[local version]
[supplement]
-
Cai, T. T., Ma, Z., and Wu, Y. (2013)
Sparse PCA: Optimal rates and
adaptive estimation.
Annals of Statistics, Vol.41, pp.3074-3110.
-
Ma, Z. (2013)
Sparse principal component analysis and iterative thresholding.
Annals of Statistics, Vol.41, pp.772-801.
[complete version with supplement]
[Matlab Code]
-
Cai, T. T. and Ma, Z. (2013)
Optimal hypothesis testing for high-dimensional covariance matrices.
Bernoulli, Vol.19, pp.2359-2388.
-
Johnstone, I. M. and Ma, Z. (2012)
Fast approach to the Tracy-Widom law at the edge of GOE and GUE.
Annals of Applied Probability, Vol.22, pp.1962-1988.
[Matlab Code]
-
Ma, Z. (2012)
Accuracy of the Tracy-Widom limits for the extreme eigenvalues in white
Wishart matrices.
Bernoulli, Vol.18, pp.322-359.
[supplement]
[R
package]
-
Zhao, H., Ma, Z., Tibshirani, R., Higgins, J. P. T., Ljungberg, B., and
Brooks, J. D. (2009)
Alteration of gene expression signatures of cortical differentiation and
wound response in lethal clear cell renal cell carcinomas.
PLoS ONE 4(6): e6039.
-
Ma, Z., Xie, X., and Geng, Z. (2008)
Structural learning of chain graphs via decomposition.
Journal of Machine Learning Research, Vol.9, pp.2847-2880.
[R package]
-
Xie, X., Ma, Z., and Geng, Z. (2008)
Some association measures and their collapsibility.
Statistica Sinica, Vol.18, pp.1165-1183.
-
Ma, Z., Xie, X., and Geng, Z. (2006)
Collapsibility of distribution dependence.
Journal of the Royal Statistical Society, Series B, Vol.68, pp.127-133.
Invited Discussions and Reviews
-
Gao, C. and Ma, Z. (2021)
Minimax rates in network analysis: Graphon estimation, community detection and hypothesis testing.
Statistical Science, Vol.36(1), pp.16-33.
-
Gao, C. and Ma, Z. (2020)
Discussion of `Network cross-validation by edge sampling'.
Biometrika, Vol.107(2), pp.281-284..
-
Low, M. and Ma, Z. (2015)
Discussion: Frequentist coverage of adaptive nonparametric Bayesian credible sets.
Annals of Statistics, Vol.43(4), pp.1448-1454.
Archived Preprints
-
Chen, S., Jiang, S., Ma, Z., Nolan, G. P., and Zhu, B. (2022)
One-way matching of datasets with low rank signals.
arXiv:2204.13858.
-
Banerjee, D. and Ma, Z. (2017)
Optimal hypothesis testing for stochastic block models with growing degrees.
arXiv:1705.05305.
|